
Indian J.Sci.Res. 17(2): 539-542, 2018 ISSN: 0976-2876 (Print)

 ISSN: 2250-0138(Online)

1Corresponding Author

IMPLEMENTING FILE COMPRESSION AND IMPROVING HIGH PERFORMANCE FOR

BIG FILE CLOUD

1
K. Krishna Priyanka

1
Department of Computer Science and Engineering, Aurora’s Scientific, Technologicaland Research Academy,

Bandlaguda, Hyderabad

Abstract-: Cloud services are provides services to the consumers. Cloud based storage services are rapidly growing and

make a new trend in data storage field. In the previous days there are many problems when designing an efficient storage

engine for cloud-based systems with some requirements such as processing of big file, lightweight meta-data, low latency,

parallel compression of I/O data, sharing, high Capability of a system growth some amount of data. Key-value stores

played an important role and give many advantages when solving those problems. This paper presents about Big File Cloud

(BFC) with its value store. low-complicated, fixed-size meta-data design, which supports fast and operating at the same

time and running parallel, sharing of file I/O, more algorithms for fit re-sumable upload, download and simple data

deduplication method for static data.

Keywords: Cloud Services, Social Network, Load Balancing, Cloud Based System.

I. Introduction

Cloud-based storage services commonly serves millions of

users with storage capacity for each user can reach to

several gigabytes to terabytes of data. People use cloud

storage for the daily demands, for example backing-up

data, sharing file to their friends via social networks such

as Face book, Zing Me. Users also probably upload data

from many different types of devices such as computer,

mobile phone or tablet. After that, they can download or

share them to others. System load in cloud storage is

usually really heavy.

Serving intensity data service for a large number of users

without bottle-neck; Storing, retrieving and managing big-

files in the system efficiently; Parallel and resumable

uploading and downloading; Data deduplication to reduce

the waste of storage space caused by storing the same

static data from different users. In traditional file systems,

there are many challenges for service builder when

managing a huge number of big file: How to scale system

for the incredible growth of data;How to distribute data in

a large number of nodes; How to replicate data for load-

balancing and fault-tolerance; How to cache frequently

accessed data for fast I/O, etc. A common method for

solving these problems which is used in many Distributed

File Systems and Cloud Storages is splitting big file to

multiple smaller chunks, storing them on disks or

distributed nodes and then managing them using a meta-

data system . Storing chunks and meta-data efficiently and

designing a lightweight meta-data are significant problems

that cloud storage providers have to face. After a long time

of investigating, we realized that current cloud storage

services have a complex meta-data system; at least the size

of metadata is linear to the file size for every file.

Therefore, the space complexity of these meta-data system

is O(n) and it is not well scalable for big-file. In this

research, we propose new big-file cloud storage

architecture and a better solution to reduce the space

complexity of meta-data.

Key-Value stores have many advantages for storing data in

data-intensity services. They often outperform traditional

relational databases in the ability of heavy load and large-

scale systems. In recent years, key-value stores have an

unprecedented growth in both academic and industrial

field. They have low-latency response time and good

scalability with small and medium key-value pair size.

Current key-value stores are not designed for directly

storing big-values, or big file in our case. We executed

several experiments in which we put whole file-data to

key-value store, the system did not have good performance

as usual for many reasons: firstly, the latency of put/get

operation for big-values is high, thus it affects other

concurrent operations of key-value store service and

multiple parallel accesses to different value reach limited.

Secondly, when the value is big, there is no more space to

cache another objects in main memory for fast access

operations. Finally, it is difficult to scale-out system when

number of users and data increase. This research is

implemented to solve those problems when storing big-

values or big-file using key-value stores. It brings many

advantages of key-value store in data management to

design a cloud-storage system called Big File Cloud

(BFC). These are our contributions in this research: –

Propose a light-weight meta-data design for big file. very

file has nearly the same size of meta-data. BFC has O(1)

space complexity of meta-data of a file, while size of meta-

data of a file in Dropbox[1], HDFS[4] has space

complexity of O(n) where n is size of original file. See Fig

IMPLEMENTING FILE COMPRESSION AND IMPROVING HIGH PERFORMANCE FOR BIG FILE CLOUD

Indian J.Sci.Res. 17(2): 539-542, 2018

9 – Propose a logical contiguous chunk-id of chunk

collection of files. Those make it easier to distribute data

and scale-out the storage system. – Bring the advantages of

key-value store into big-file data store which is not default

supported for big-value.ZDB[16] is used for supporting

sequential write, small memory-index overhead. These

contributions are implemented and evaluated in Big File

Cloud (BFC) that serve storage for Zing Me Users. Disk

Image files of VNG’s CSM Boot diskless system are

stored in Big File Cloud.

II. Related Work

Cloud-based capacity administrations are quickly

developing and turning into a rising pattern in information

stockpiling field. There are numerous issues when

planning a proficient stockpiling motor for cloud-based

frameworks with a few prerequisites, for example,

enormous document handling, lightweight meta-

information, low inactivity, parallel I/O, deduplication,

circulated, high adaptability. Key-worth stores assumed an

essential part and indicated numerous points of interest

when taking care of those issues. This paper presents about

Big File Cloud (BFC) with its calculations and

construction modeling to handle most of issues in a major

document distributed storage framework in view of key

value store. It is finished by proposing low-confused,

settled size meta-information outline, which backings

quick and exceedingly simultaneous, dispersed record I/O,

a few calculations for resumable transfer, download and

basic information deduplication technique for static

information. This examination connected the upsides of

ZDB - an in-house key value store which was upgraded

with auto-increase whole number keys for taking care of

enormous document stockpiling issues proficiently. The

outcomes can be utilized for building versatile

appropriated information distributed storage that bolster

huge document with size up to a few terabytes.

III. Frame Work

A common method for solving these problems which is

used in many Distributed File Systems and Cloud Storages

is splitting big file to multiple smaller chunks, storing them

on disks or distributed nodes and then managing them

using a meta-data system. Storing chunks and meta-data

efficiently and designing a lightweight meta-data are

significant problems that cloud storage providers have to

face. After a long time of investigating, we realized that

current cloud storage services have a complex meta-data

system; at least the size of metadata is linear to the file size

for every file. we propose new big-file cloud storage

architecture and a better solution to reduce the space

complexity of meta-data.

A. Detection of service

A common method for solving these problems which is

used in many Distributed File Systems and Cloud Storages

is splitting big file to multiple smaller chunks, storing them

on disks or distributed nodes and then managing them

using a meta-data system. Storing chunks and meta-data

efficiently and designing a lightweight meta-data are

significant problems that cloud storage providers have to

face. After a long time of investigating, we realized that

current cloud storage services have a complex meta-data

system; at least the size of metadata is linear to the file size

for every file. low-complicated, fixed-size meta-data

design, which supports fast and operating at the same time

and running parallel, sharing of file I/O, more algorithms

for fit resumable upload, download and simple data

deduplication method for static data. This research applied

the advantages of key value store which is make best or

more effective use with auto-increment integer keys for

solving big-file storage problems efficiently. Finally the

results can be used to make able to change the size in

distributed data cloud storage that will support big-file

with size up to a millions of information.

B. Overall Description

A Software Requirements Specification (SRS) – a

requirements specification for a software system is a

complete description of the behavior of a system to be

developed. It includes a set of use cases that describe all

the interactions the users will have with the software. In

addition to use cases, the SRS also contains non-functional

requirements. Nonfunctional requirements are

requirements which impose constraints on the design or

implementation (such as performance engineering

requirements, quality standards, or design constraints).

System requirements specification: A structured collection

of information that embodies the requirements of a system.

A business analyst, sometimes titled system analyst, is

responsible for analyzing the business needs of their

clients and stakeholders to help identify business problems

and propose solutions. Within the systems development

lifecycle domain, the BA typically performs a liaison

function between the business side of an enterprise and the

information technology department or external service

providers. Projects are subject to three sorts of

requirements:

Preliminary investigation examine project feasibility, the

likelihood the system will be useful to the organization.

The main objective of the feasibility study is to test the

Technical, Operational and Economical feasibility for

adding new modules and debugging old running system.

All system is feasible if they are unlimited resources and

infinite time. There are aspects in the feasibility study

portion of the preliminary investigation

Application Layer: It consists of native software on

desktop computers, mobile devices and

IMPLEMENTING FILE COMPRESSION AND IMPROVING HIGH PERFORMANCE FOR BIG FILE CLOUD

Indian J.Sci.Res. 17(2): 539-542, 2018

web-interface, which allow user to upload, download and

share their own files.

Storage Logical Layer: it consisted of many queuing

services and worker services, ID-Generator services and

all logical API for Cloud Storage System. This layer

implements business logic part in BFC.

Object Store Layer: It contains many distributed backend

services. Two important services of Object Store Layer are

FileInfoService and ChunkStoreService. FileInfoService

stores information of files. Y-value store mapping data

from fileID to FileInfo structure.ChunkStoreService stores

data chunks which are created by splitting from the

original files that user uploaded.

Persistent Layer: it based on ZDB key-value store. There

are many ZDB instances

which are deployed as a distributed service and can be

scaled when data growing.

Fig: 1. BFC Architecture

Fig.1. Cloud services are provides services to the

consumers. Cloud based storage services are rapidly

growing and make a new trend in data storage field. In the

previous days there are many problems when designing an

efficient storage engine for cloud-based systems with some

requirements such as processing of big file, lightweight

meta-data, low latency, parallel compression of I/O data,

sharing, high Capability of a system growth some amount

of data. Key-value stores played an important role and give

many advantages when solving those problems. This paper

presents about Big File Cloud (BFC) with its

valuestorewhich supports fast and operating at the same

time and running parallel, sharing of file I/O, more

algorithms for fit resumable upload, download and simple

data deduplication method for static data. This research

applied the advantages of key value store which is make

best or more effective use with auto-increment integer

keys for solving big-file storage problems efficiently.

Finally the results can be used to make able to change the

size in distributed data cloud storage that will support big-

file with size up to a millions of information.

IV. Experimental Results

Our implementation and experiments were developed to

validate and examine the overall performance of each the

credibility model and the provision model.After compress

the files we can do the more compression in large memory

files into zip files.

Fig:2 File information on screen

Fig: 3 Compression Chart

V. Conclusion

Cloud services are provides services to the consumers.

Cloud based storage services are rapidly growing and

make a new trend in data storage field. In the previous

days there are many problems when designing an efficient

storage engine for cloud-based systems with some

requirements such as processing of big file, lightweight

meta-data, low latency, parallel compression of I/O data,

sharing, high Capability of a system growth some amount

of data. Key-value stores played an important role and give

many advantages when solving those problems. This paper

presents about Big File Cloud (BFC) with its value store.

low-complicated, fixed-size meta-data design, which

supports fast and operating at the same time and running

parallel, sharing of file I/O, more algorithms for fit

resumable upload, download and simple data deduplication

method for static data.

References

[1] D. Borthakur. Hdfs architecture guide.HADOOP

APACHE PROJECT

http://hadoop.apache.org/common/docs/current/hdfs

design. pdf, 2008

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and R.

IMPLEMENTING FILE COMPRESSION AND IMPROVING HIGH PERFORMANCE FOR BIG FILE CLOUD

Indian J.Sci.Res. 17(2): 539-542, 2018

E. Gruber. Bigtable: A distributed storage system for

structured data. ACM Transactions on Computer

Systems (TOCS), 26(2):4, 2008.

[3] L. Chappell and G. Combs. Wireshark network

analysis: the official Wireshark certified network

analyst study guide. Protocol Analysis Institute,

Chappell University, 2010.

[4] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A.

Pras. Benchmarking personal cloud storage. In

Proceedings of the 2013 conference on Internet

measurement conference, pages 205–212. ACM,

2013.

[5] I. Drago, M. Mellia, M. M Munafo, A. Sperotto,

R.Sadre, and A. Pras.

Inside dropbox: understanding personal cloud

storage services. In Proceedings of the 2012 ACM

conference on Internet measurement conference,

pages 481–494. ACM, 2012.

[6] P. FIPS. 197: the official aes standard. Figure2:

Working scheme with four LFSRs and their IV

generation LFSR1 LFSR, 2, 2001.

[7] S. Ghemawat and J. Dean.Leveldb is a fast key-

value storage library written at google that provides

an ordered mapping from string keys to string

values. https://github.com/google/leveldb. Accessed

November 2, 2014.

[8] S. Ghemawat, H. Gobioff, and S.-T.Leung. The

google file system. In ACM SIGOPS Operating

Systems Review, volume 37, pages 29–43. ACM,

2003.

[9] Y. Gu and R. L. Grossman. Udt: Udp-based data

transfer for high-speed wide area networks.

Computer Networks, 51(7):1777–1799, 2007.

[10] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.

Zookeeper: wait-free coordination for internet-scale

systems. In Proceedings of the 2010 USENIX

conference on USENIX annual technical conference,

volume 8, pages 11–11, 2010.

