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ABSTRACT 

 The present work proposes an analytical investigation of dynamic characteristics for non-linear vibration of 

functionally graded plates submerged in fluidic medium. The governing equation of the plate vibrating in fluid is analytically 

derived based on Kirchhoff’s plate theory and the potential flow theory. The influence of fluidic medium is incorporated in 

governing equation in form fluids forces associated with inertial effects of its surrounding fluids. The velocity potential 

function and Bernoulli’s equation are used to describe the fluid forces acting on plate surface. Both partially and totally 

submerged plate configurations are considered. The significance of using Berger formulation for in-plane forces is such that it 

introduces cubical nonlinearity to the system. The application of Galerkin’s method reformulates the derived governing 

equation into well known Duffing equation. An approximate solution for nonlinear governing equation of coupled fluid-plate 

system is obtained by using a perturbation technique. For assessment of the present results, they are compared with the 

experimental and numerical results of isotropic submerged plate which shows good agreements.  New results for fundamental 

frequencies as affected by level of submergence, fluid density and immersed depth of plate are presented for two different 

boundary conditions. The effect of above parameters on peak amplitude and frequency response curves is also established in 

the present study. 

KEYWORDS: Non-linear Vibration, Classical Plate Theory, Fluid-plate Interaction, Virtual Added Mass.     

 In recent years the dynamic behavior of plate 

structures under fluidic medium has received 

considerable attention due to its wide applications in 

ship building, nuclear, ocean and naval engineering. It 

is well known that the vibrations of submerged 

structures are different than those in vacuum. 

Therefore, the study of dynamic characteristics of plate 

structures coupled with fluid is important for its safety 

and designing purpose. The vibration characteristics of 

submerged isotropic plate is rigorously treated and well 

studied in literature. The analytical approach for the 

vibration problem  of  coupled fluid-plate system was 

first initiated by Lamb, 2016. He calculated the change 

in natural frequency of a thin clamped circular plate in 

contact with water based on Rayleigh’s method, and 

then Powell and Roberts, 1922 experimentally verified 

the theoretical results of Lamb, 2016. The dry and wet 

dynamic characteristics of cantilever plates partially or 

totally immerged in water are studied by Fu and Price, 

1987. Kwak and Kim, 1991 determined the added 

virtual mass incremental (AVMI) factor which shows 

the increase in inertia due to presence of fluid. They 

studied the effect of fluidic medium on axisymmetric 

vibration of floating circular plate. Haddara and Cao, 

1996 studied the dynamic behavior of rectangular plates 

vibrating under water. The effect of boundary 

conditions and depth of submergence has been 

investigated experimentally and analytically in their 

study. Soedel and Soedel, 1994 found the coupled 

equations of motion of plates carrying fluids. They 

developed a closed form solution for natural 

frequencies of fluid-plate coupled system. Kerboua et 

al., 2008 developed a mathematical model for free 

vibrating plate in contact with water using the 

combination of the finite element method and Sander’s 

shell theory. Li et al., 2013 presented an analytical 

approach for the natural frequencies of a unidirectional 

vibrating steel strip partially submerged in fluid. 

Recently, Hosseini Hashemi et al., 2012 worked on free 

vibration analysis of horizontal rectangular plates 

partially and totally submerged in fluid. They 

developed a mathematical model for moderately thick 

rectangular plate based on the Mindlin plate theory for 

six different boundary conditions.  

 A few researchers worked on free vibration of 

thin functionally graded plates using classical plate 

theory. Natural frequencies of simply supported and 

clamped functionally graded plates were obtained by 

Abrate, 2008. Employing the von-Karman theory Woo 

et al., 2006 provided an analytical solution for the 

nonlinear vibration of FG square thin plates in vacuum. 

Similarly based on higher-order shear deformation 

theories and 3D methods the nonlinear free and forced 

vibration of functionally graded plates have also been 

investigated in vacuum by many researchers (Hosseini-

Hashemi et. al., 2010, Talha and Singh, 2010 & Reddy 

and Cheng, 2003). To the best of author’s knowledge, 

research studies on the dynamic behavior of submerged 

functionally graded plates have received very little 

attention. The present work addresses this by proposing 

an analytical approach for vibration of thin functionally 
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graded plate coupled with fluid. 
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Figure 1: Plate Configuration 

FUNCTIONALLY GRADED PLATE 

 A functionally graded (FG) plate under 

consideration is made up by mixing two distinct phases 

of metal and ceramic. It is assumed that material is 

graded only in the thickness direction. The top surface 

is made up of ceramic which is graded to metal by a 

power law distribution. The effective material 

properties of each layer for the FG plate can be 

estimated by Mori-Tanaka scheme and are represented 

as 

E = 9KG3K + G 

K −	K
K� −		K
 = 	 V�
1 +	�1 − 	V�� 3�K� 	− 	K
�3K
 + 	4G


 

G −	G
G� −		G
 =	 V�
1 +	�1 −	V�� �G�	 −	G
�G
 +	G
�9K
 + 		8	G
�6�K
 + 		2	G
� 	

 

ν = 3K − 2G2�3K + G� 
 where K, G and E are the effective bulk 

modulus, shear modulus and Young's modulus 

respectively. Km and Gm are the bulk modulus and shear 

modulus of the metal phase. Kc and Gc are the bulk 

modulus and shear modulus of the ceramic phase. The 

volume fractions of the metal and ceramic phases are 

related by 	V� + V
 = 1 . Where V� = ������� ��  and n  is 

the gradient index also known as volume fraction 

exponent. 

GOVERNING EQUATION OF PLATE COUPLED 

WITH FLUID 

 Based on Kirchhoff’s thin plate theory, the 

classical form governing equation of an isotropic 

rectangular plate is rigorously treated in Ref. [Leissa, 

1969]. Here using the similar approach a new 

governing equation is derived for a functionally graded 

plate considering the effect of surrounding fluid 

medium. To derive such a governing equation of 

coupled fluid-plate system as shown in Fig. 1, the 

following assumptions are considered in the modeling: 

1. The plate is assumed as thin, perfectly elastic and 

homogenous made up of isotropic material and has a 

uniform thickness ‘h’ which is very small as 

compared to its other dimensions. 

2. The normal stress σ�  acting in the transverse 

direction of plate is considered to be small and 

therefore, it is neglected from all stress-strain 

relationship while modeling. 

3. Effects of shear deformation and rotary inertia are 

neglected. 

4. The fluid flow is potential (i.e., homogeneous, 

incompressible, inviscid and its motion is 

irrotational). 

5. Small amplitude of bending vibrations is considered 

(i.e., fluid motion is small). 

6. Effect of boundary conditions on the plane wave 

number is neglected. 

 Based on above assumptions, the final version 

of the governing equation of functionally graded plate 

coupled with fluid can be expressed as 

D� �∂ w∂x + 	2	 ∂ w∂x� ∂y� +	∂ w∂y $ = −ρ�h ∂�w∂t� − ∆P 

+N+ ,-.,+- +	N/ ,-.,/- + P�										(1) 

 Where, D� = 01�23��3451-� is the effective flexural 

rigidity of FG plate. E� and ν� are the effective modulus 

of elasticity and Poisson’s ratio respectively. ρ� is the 

effective density of the plate. ∆P is the fluid dynamic 

pressure difference on plate submerged partially or 

fully in fluid. w  is the transverse deflection of the 

middle surface of plate. Pz is the transverse load per 

unit area, N+, N/  are the in-plane or membrane forces 

per unit length in x and y directions whereas the in-

plane shear force (N+/ ) is neglected in the present 

modeling. 
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Figure 2: Horizontally submerged FG plate

 The plate element for fluid dynamic pressure 

in case of horizontally submerged condition is shown in 

Fig. 2, Whereas Fig. 3 shows the plate in vertically 

immersed condition. In present study the fluid pressure 

acting upon the plate surface is expressed as 

acceleration which helps to form the required governing 

equation of a coupled fluid-plate system. The net fluid 

dynamic pressure difference (∆P) for horizontally 

submerged plate can be stated as [Kerboua et. al., 2008

∆7 = 7899:; − 7<=>:; = − ?@A B3�C:-DEF34C:-DEF − 33
(2) 

 Similarly, In case of a vertically immersed 

plate (as shown in Fig. 3.) the net fluid dynamic 

pressure difference can be expressed as [Li et. al., 2013

 ∆7 = 7;GHIJ − 7<:KJ = − ?@A B3�:-DLF34:-DLF − 3�34

 Where, M = HA4N-
HA�N-   and O  is the natural 

frequency of plate in vacuum. PK is the fluid density, 

is the plane wave number which represents the 

magnitude of wave motion and can be determined as 

Q = RS 3<F- + 3<--   for horizontally submerged plate and

Q = RS 3<F- + 3T-- for vertically immersed plate, Z

immersed depth of plate under fluid. 

Fluid free surface 

z 

    FGM 

h1 

h2 

Fluid  
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Horizontally submerged FG plate 

The plate element for fluid dynamic pressure 

in case of horizontally submerged condition is shown in 

Fig. 2, Whereas Fig. 3 shows the plate in vertically 

immersed condition. In present study the fluid pressure 

acting upon the plate surface is expressed as a function 

acceleration which helps to form the required governing 

plate system. The net fluid 

∆P) for horizontally 

Kerboua et. al., 2008] 

3�:U-DE-34:U-DE-V W->WJ-     

Similarly, In case of a vertically immersed 

plate (as shown in Fig. 3.) the net fluid dynamic 

Li et. al., 2013] 

�:U-DL-4:U-DL-V W->WJ-         

(3) 

is the natural 

is the fluid density, Q 

is the plane wave number which represents the 

magnitude of wave motion and can be determined as 

for horizontally submerged plate and 

for vertically immersed plate, Z2 is the 

Figure 3: Vertically immersed FG plate

 On substituting Eq. (2) and Eq.(3) into Eq.(1) 

we get a generalized equation of functionally graded 

plate coupled with fluid. 

X: �Y ZY[ + 	2	 Y ZY[�Y\� +	Y
 
Y\

= −�P:] +
+ _̂ W->W_- +	

Where, 

	`abb = − ?@A B3�C:-DEF34C:-DEF − 3�:U-DE-34:U-DE-V
mass due to fluid for horizontally submerged plate and

 `abb = − ?@A B3�:-DLF34:-DLF − 3�:U-DL-34:U-DL-V  
mass due to fluid for vertically submerged plate.

SOLUTION OF GOVERNING

 The general solution for the transverse 

deflection of plate in terms of characteristic modal 

functions given by Galerkin's method can be stated as 

[Joshi et. al., 2015] 

Z	�[, \, c� = ∑ ∑ efg∞fh3 if		j∞gh3
 Where, if		 and 		jg  are the characteristic or 

modal functions satisfying the boundary conditions of 

the plate in the fluidic medium, 

amplitude and kfg�c� is time dependent moda

Using the Berger’s formulation the in

and l̂ ) are expressed in form of the middle surface 

strains and then expressing the middle surface strains in 

form of lateral deflection, the final form of in

forces can be written as 

_̂ = 6X:]�m3m�n n o o
pqr
qstYiY[
u: t

<-
v

<F
v

∞

fh3
∞

gh3

x 
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Vertically immersed FG plate 

On substituting Eq. (2) and Eq.(3) into Eq.(1) 

we get a generalized equation of functionally graded 

 ZY\ $
� +`abb� Y�ZYc�  

	 l̂ W->Wl- + 7w 										(4) 

Vis the virtual added 

mass due to fluid for horizontally submerged plate and 

V  is the virtual added 

due to fluid for vertically submerged plate. 

GOVERNING EQUATION 

The general solution for the transverse 

deflection of plate in terms of characteristic modal 

functions given by Galerkin's method can be stated as 

jgkfg�c�             (5) 

are the characteristic or 

modal functions satisfying the boundary conditions of 

the plate in the fluidic medium, efg 	 is an arbitrary 

is time dependent modal term. 

Using the Berger’s formulation the in-plane forces ( _̂ 

are expressed in form of the middle surface 

strains and then expressing the middle surface strains in 

form of lateral deflection, the final form of in-plane 

q
qstYifY[ x� jg� +

tYjgY\ x
� if�yqz

q{|[ |\	 
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efg�kfg�c�� 

(6) 

l̂ = 6X:]�m3m�n n o o
pqr
qstYjgY\ x

� if� +
	u: tYifY[ x� jg�yqz

q{|[ |\<-
v

<F
v

∞

fh3
∞

gh3  

efg�kfg�c�� 

 (7) 

 On substituting the Eq. (5), (6) and (7) into the 

Eq. (4), multiplying by Xm , Yn on both side and then 

integrating over the whole plate area, one finds the 

governing equation of FG plate coupled with fluid as 

 

�P:] + `abb�X: n n efg
∞

fh3
∞

gh3
o o if�jg�<-

v
<F
v  

|[ |\ Y�kfg�c�Yc�  

 

+n n efg
∞

fh3
∞

gh3
kfg�c� o o }�ifG~jg + 2	ifGGjgGG+jgG~if�	 �<-

v
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ifjg |[ |\ 
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∞

fh3
∞

gh3
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v
<F
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(8) 

Where 

�3fg = 6]�m3m�n n o o ��YifY[ ��jg�<-
v

<F
v

∞

fh3
∞

gh3
+ u:�YjgY\ ��if�� |[ |\ 

��fg = 6]�m3m�n n o o }tYjgY\ x
� if�<-

v
<F
v

∞

fh3
∞

gh3
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 The modal peak amplitude efg is normalized 

to unity and point load 	7w  is acting on the plate at 

position ([v	, \v). The Eq. (8) may be expressed as well 

known Duffing equation containing a cubical nonlinear 

term. 

 

�fg Y�kfg�c�Yc� +		�fg	kfg�c� + 		�fg	kfg�c�� 			= 		 7fg 

(9) 

Where 

�fg
= �P:] + `abb�X: n n efg

∞

fh3
∞

gh3
o o if�jg�<-

v |[ |\<F
v  

 

�fg = n n efg
∞

fh3
∞

gh3
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v
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�fg
= n n efg�

∞

fh3
∞

gh3
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v
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7fg =	7v�c�X: �fg 

 

 Where, �fg = if�[v�jg�\v� , if�[v�	 and 	jg�\v�   are given by the integration of 

delta function  � if�[�∞4∞
��[ − [v�  and 

� jf�\�∞4∞
��\ − \v� respectively. 

 On dividing �fg on both sides of Eq. (9) and 

considering the system is under the influence of weak 

classical linear viscous damping Q= then the nonlinear 

governing equation can be restated as 

W-����J�WJ- 	+ 	2Q= W����J�WJ 	+ Ofg� kfg�c� 	+
	�fgkfg�c�� = ������J���        (10) 

Where, 

Ofg� = �fg�fg 

�fg = 	 �fg�fg 

�fg = 	 �fg�fg =
if�[v�jg�\v��fg  
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Ofg is the natural frequency of the plate vibrating in 

fluid and �fg	is the cubic nonlinearity of plate. 

FREQUENCY RESPONSE AND PEAK 

AMPLITUDE 

 The method of multiple scales is one of the 

most reliable perturbation techniques used for 

determining the frequency response equation from the 

Duffing equation and is well known presented in the 

book, ‘Perturbation Theory and Methods’ by Murdock. 

Authors in Ref. [Joshi et. al., 2015 & Murdock, 1999] 

have used this method to find the approximate 

analytical solution of Duffing equation for an isotropic 

rectangular plate. In present study, similar approach has 

been used to understand the nonlinear behavior of 

functionally graded plate under influence of fluid 

medium. The final expression for frequency response of 

the functionally graded plate coupled with fluid can be 

written as 

�fg = �	����-�N�� 	+	S� ���-
 	N��- ��-�- 7v� − Q=��            (11) 

 Where, �fg  is the detuning parameter which 

describes quantitatively the closeness of excitation 

frequency �fg with the fundamental frequency	Ofg, J 

is the amplitude of response and 7= is the amplitude of 

excitation force. The peak amplitude of response is 

found to be independent of cubic nonlinearity and is 

given by 

�9 = 	 ����N����A� 7v                               (12) 

RESULT AND DISCUSSION 

 This section presents the new results for first 

mode of natural frequency in terms of non dimensional 

frequency parameter of a functionally graded plate 

coupled with fluid medium. The results are presented 

for submerged plate for two configurations; (i) 

Horizontally submerged plate (ii) Vertically immersed 

plate. For validation of the proposed model a 

comparison study of non dimensional frequency 

parameters obtained by MPT [Hosseini-Hashemi et. al., 

2012] and the present method (CPT) is conducted in 

Table 1 for intact isotropic plate submerged partially or 

totally in fluid with two different boundary conditions. 

The mechanical and geometrical properties of plate are 

taken as: Young’s modulus E = 207 GPa, material 

density P = 7850 kg-m
-3

, Poisson’s ratio u = 0.3, l1 = 2 

m, l2 = 1 m and thickness h = 0.1 m. The dimensions of 

fluid tank are taken as 5 m x 5 m x 5 m. From Table 1 it 

is seen that, the present results are in agreement with 

the published one. The frequency parameters for 

different fluid levels �IF<F�  obtained by present theory 

are slightly higher than the results of existing (MPT) 

theory it is because of ignoring the effects of shear 

deformation and rotary inertia.  

Table 1: Comparison of non dimensional frequency 

parameter �ω
�l3��ρh D⁄ ¡ of intact plate submerged 
in water as a function of fluid level. 

B.C. 

In vacuum 

In water h3l3 = 0 
h3l3 = 0.1 

Prese

nt 

theory 

MPT 

Prese

nt 

theory 

MPT  

Prese

nt 

theory 

MP

T  

S-F-S-

F 
9.86 9.45 7.33 6.71 6.88 6.33 

S-S-S-

S 
49.34 

48.3

0 
42.27 

41.4

2 
39.22 

38.4

6 

 

Table 2: Comparison of frequency parameter of FG 

plate for the three boundary conditions (n = 1) 

B.C. 
Frequency parameter �ω
�l3�/h�ρ� E�⁄ ¡ 

(l1/l2) = 1 (l1/l2) = 2 

 Present 

Ref. 

[Joshi et. 

al., 2015] 

present 

Ref. 

[Joshi et. 

al., 2015] 

S-S-S-S 3.461 3.460 8.653 8.651 

C-C-S-S 4.972 4.970 12.961 12.955 

C-C-F-F 0.899 0.897 2.585 2.577 

    

 The validation of present model for 

functionally graded plate in absence of fluid medium is 

carried out in Table 2. It shows the comparison of 

frequency parameters obtained using present model 

with the existing results. The properties of FG plate is 

taken from Ref. [Joshi et. al., 2015]. It is observed that 

the present results are in good agreement with 

published results. 

 The new results for frequency parameter of 

functionally graded plate coupled with fluid as affected 

by level of submergence, immersed depth of plate and 

gradient index are given in Table 3 and 4. The 

functionally graded material properties are taken from 

Refs. [ Joshi et. al., 2015][Natarajan et. al., 2011] for 

silicon nitride and stainless steel (Si3N4/SUS304). The 

plate dimensions are l1 = l2 = 1 m and thickness h = 

0.01 m. The fluid is taken as water with density 1000 

kg-m
3
 and damping factor 0.061. The dimensions of 
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tank are assumed to be 5 m x 5 m x 5 m. Four boundary 

conditions are considered for the analysis. A point load 

of 10N, acting at point xo = 0.375, yo

considered for frequency response and peak amplitud

From Table 3 and 4, it is seen that regardless of 

boundary conditions, the frequency parameter decreases 

with increase in level of submergence (h

immersed depth of plate (Z2). This is because of the 

added virtual mass of plate due to surroundin

is also seen, for fixed level of submergence and 

immersed depth, as the gradient index (n) increases the 

frequency parameter decreases for both the boundary 

conditions.      

Table 3: Non dimensional frequency parameter

functionally graded plate for various level of 

submergence and gradient index.

Frequency parameter �ω
�l3�/h�ρ�
B.C. n 

In 

vacuum 

In waterh3l3= 0.1 

h3l3= 0.2
S-S-S-S 0 5.935 1.561 1.429

 1 3.46 1.303 1.201

 5 2.477 1.108 1.026

C-C-S-

S 
0 8.524 2.241 2.052

 1 4.970 1.871 1.724

 5 3.557 1.591 1.474

  

Table 4: Non dimensional frequency parameter

functionally graded plate as a function of immersed 

depth and gradient index. 

Frequency parameter �ω
�l3�/h�ρ�
B.C. n 

In water Z�= 0.1 

Z�= 0.2 
Z� = 0

S-S-S-S 0 3.097 2.370 2.010

 1 2.332 1.885 1.636

 5 1.849 1.547 1.365

C-C-S-

S 
0 4.448 3.404 2.887

 1 3.349 2.707 2.350

 5 2.656 2.221 1.961

 

 By employing the method of multiple scales,

the peak amplitude (Jp) of the functionally graded plate 

vibrating under fluid is examined in present study. 

Table 5 shows the peak amplitude of the horizontally 

ANALYTICAL MODELING FOR NON-LINEAR VIBRATION ANALYSIS OF

5 m. Four boundary 

conditions are considered for the analysis. A point load 

o = 0.75 is 

considered for frequency response and peak amplitude. 

From Table 3 and 4, it is seen that regardless of 

boundary conditions, the frequency parameter decreases 

with increase in level of submergence (h1/l1) and 

). This is because of the 

added virtual mass of plate due to surrounding fluid. It 

is also seen, for fixed level of submergence and 

immersed depth, as the gradient index (n) increases the 

frequency parameter decreases for both the boundary 

Non dimensional frequency parameter of 

ate for various level of 

submergence and gradient index. 

� � E�⁄ ¡ 
In water 

2 

h3l3 = 0.3 

1.429 1.370 

1.201 1.154 

1.026 0.989 

2.052 1.968 

1.724 1.657 

1.474 1.420 

Non dimensional frequency parameter of 

functionally graded plate as a function of immersed 

� � E�⁄ ¡ 
0.3 Z� = 0.4 

2.010 1.791 

1.636 1.477 

1.365 1.244 

2.887 2.573 

2.350 1.121 

1.961 1.787 

By employing the method of multiple scales, 

) of the functionally graded plate 

vibrating under fluid is examined in present study. 

Table 5 shows the peak amplitude of the horizontally 

submerged plate for different level of submergence. It 

is observed from Table 5, the increase

submergence (h1/l1) decreases the peak amplitude of 

submerged plate. The reason being the resistance 

offered by the fluid medium to the vibratory motion of 

plate. 

Table 5: Peak amplitude (mm) for functionally 

graded plate horizontally submerged in water (n 

=1). 

Peak amplitude

B.C. 
In 

vacuum 
h3l3 = 0.1 

S-S-S-S 9.688 3.647 

C-C-S-S 13.850 5.214 

 

Figure 4: Non linear response curves of FG plate 

different surrounding medium, l1

 In present study the geometrically nonlinear 

( δ
�	  < 0, soft spring and δ
�	
response curves are plotted for given damping and 

excitation to study the phenomenon of bending 

TION ANALYSIS OF… 

submerged plate for different level of submergence. It 

is observed from Table 5, the increase in level of 

decreases the peak amplitude of 

submerged plate. The reason being the resistance 

offered by the fluid medium to the vibratory motion of 

Peak amplitude (mm) for functionally 

graded plate horizontally submerged in water (n 

Peak amplitude 

In water h3l3 = 0.2 
h3l3 = 0.3 

3.361 3.231 

4.804 4.619 

 

 

Non linear response curves of FG plate at 

1 = l2 = 1, h1/l1 = 0.1. 

In present study the geometrically nonlinear 	  > 0, hard spring) 

or given damping and 

excitation to study the phenomenon of bending 
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hardening/softening of coupled fluid-plate system. The 

variations in response curve with different surrounding 

mediums (air and water) are given in Fig. 4. It is 

observed that the presence of fluid medium decreases 

the non-linearity of vibrating plate for both the 

boundary conditions. This phenomenon is called 

softening of hard spring i.e. δ
�	decreases due to effect 

of fluid medium but it remains positive. It is also seen 

that the non-linearity is more for SSSS submerged plate 

as compare to CCSS. 

CONCLUSION 

 In this work, an attempt has been made to 

develop an analytical model for functionally graded 

plate coupled with fluid. The governing equation of 

coupled fluid-plate system is derived by combining 

classical thin plate theory and potential flow theory. 

The influence of the fluid medium is incorporated in 

governing equation in the form of surrounding fluid 

dynamic pressure. The velocity potential and 

Bernoulli’s equation are employed to express the fluid 

dynamic pressure acting on plate element. The results 

obtained from present study shows the influence of 

boundary conditions, level of submergence, immerged 

depth and gradient index on vibration characteristics of 

partially and fully submerged FG plates. The frequency 

response curves with effect of cubic nonlinearity are 

presented using method of multiple scales. It is 

observed that the submergence decreases the non-

linearity. Thus it can be concluded that the presence of 

surrounding fluid medium affects the vibration 

characteristics. The present model has obvious 

advantage of being ease of physical understanding, 

efficient computation time, and ease of parametric 

study. The presented approach can also be used for 

making analytical model of any curved structures 

subjected to random fluid dynamic pressures. For 

example turbine blades under influence of random fluid 

pressure induced by turbulent flow.  
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