# A CENSUS OF THE TREE SPECIES IN THE GOLAPBAG CAMPUS OF BURDWAN UNIVERSITY, WEST BENGAL (INDIA) WITH THEIR IUCN RED LIST STATUS AND CARBON SEQUESTRATION POTENTIAL OF SOME SELECTED SPECIES

# SHARMISTHA GANGULY<sup>a1</sup> AND AMBARISH MUKHERJEE<sup>b</sup>

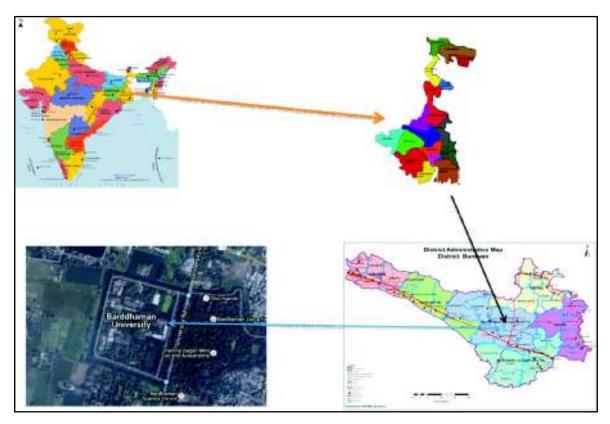
<sup>a</sup>UGC CAS Department of Botany, University of Burdwan, Burdwan, West Bengal, India

### ABSTRACT

The present census brings out an inventory of tree species in the Golapbag campus of The University of Burdwan, Burdwan in the West Bengal State of India. As many as 91 species belonging to 82 genera of 39 families, of which of which 85 species of 76 genera representing 38 families are dicotyledonous and 6 species of one family (Arecaceae) are monocotyledonous, could be included in the checklist thus prepared. Many of these species are botanically interesting, attractive and potentially sources of various phytoresources and aesthetic pleasure. The IUCN Red List status of each of these species was determined. Six of the dominating species were worked to reveal their carbon sequestration potential with an objective to find their utilitarian value in landscape designing for aesthetic rejuvenation and environmental optimization. It was found that Ficus benghalensis is the best of the lot in Carbon sequestration being successively followed by *Mimusops elengi, Roystonia regia, Senna siamea, Dalbergia lanceolaria* and *Cassia fistula*. Thus, it can be concluded that the trees composing the campus flora needs to be protected and some of them can well be chosen for further evaluation of their environment credentials in green-belt development especially polluted urban localities.

KEYWORDS: Tree Species, Carbon Sequestration, Environmental Optimization, Landscape Designing

Presently global warming is one of the most important environmental issues which together with destruction of nature, a usual event in development, have been worsening the situation so that scientists have to work out methods of resilience to optimize environment through green-belt development and landscape designing that collaterally boost up aesthetic rejuvenation of the area. Carbon sequestration potential of a plant, one of the parameters essential for its selection in green belt development, is defined as absorption of carbon dioxide by the plants from the surrounding atmosphere (Pandya et al., 2013) and its storage in the form of biomass in the tree trunks, branches, foliages and roots that can be re-emitted in the form of gaseous carbon dioxide if the biomass is incinerated (Das and Mukherjee, 2015).


Terrestrial ecosystem represents the most important sources and sinks of atmospheric carbon (Watson and Core, 2001) with 24% of net annual anthropogenic GHGs of the atmosphere (Prentice et al., 2001). Carbon sequestration potential depends of several factors such as types of species, types of soil, regional climate, topography and management practices. Global carbon cycle is maintained by  $CO_2$  exchange with the atmosphere where forest ecosystem plays a vital role (Vashum and Jaykumar, 2012) because trees are the reservoir of carbon on the earth due to their potentiality of photosynthesis. Since tree- and

<sup>1</sup>Corresponding author

shrub- species richness are more relied upon in optimization programmes, the present authors took up the census work on trees of the Golapbag campus of the University of Burdwan and revelation of the carbon sequestration potential of six of the dominating species in them. The campus selected as the study site shows a unique assemblage of many indigenous species with the exotic ones in form of ornamentals, weeds, vines, epiphytes and trees.

### **Study Site**

Golapbag, the once royal garden of the Maharaja of Barddhaman (Burdwan), is the academic campus of Burdwan University located at 23.25° N 87.85°E with an average elevation of 40 meters (131 ft) above the mean sea level. It is a little less than 100 km north-west of Kolkata. Golapbag or garden of roses is a beautiful place which was the botanical and zoological garden established by the king Bijoy Chand Mahatab in 1884 with technical advice from the then British experts in the subject. The famous botanist Sir J. D Hooker had paid a visit to the area and enlisted 128 types of trees. At present there are numerous individual trees of Polyalthia longifolia, Swietenia mahagoni, Drypetes roxburghii, Saraca asoca, Albizia saman, Dolichandrone stipulata, Manilkara hexandra, Aphanamyxis polystachia, Naringi crenulata, Pongamia pinnata, Barringtonia acutangula, and several others in the garden. A large



Study Map

number of species are unique to the campus for having been either introduced or surviving as the reminiscent of the indigenous flora that no more exists outside. Among the introduced ones Brownea coccinea, Jacquinea ruscifolia, Amherstia nobilis deserve mention. A number of factors such as variation in microhabitats, plenty of land open to plant invasion, willful introduction of species for avenue plantation, ornamentation and botanical studies, high anthropogenic concern etc. have led to the assemblage of plants of admirable distinction.

The plant diversity of the campus has been proving its worth in conveying ecological and sociocultural benevolence to the society in several ways. The greenery of the campus together with Ramnabagan Wildlife Sanctuary has been optimizing the environment by constituting a green patch in the peri-urban area of Bardhaman city to sustain a wide diversity of fauna and abate pollution . However the campus has been experiencing threats of biodiversity impoverishment especially of the rare species.

### METHODOLOGY

Trees growing the campus of the University were studied by the present authors. Specimens from them were worked out following standard taxonomic methods for identification. For confirmation of identification pertinent literature was consulted (Prain, 1903; Bennet, 1987;Guha Bashi, 1984) and for updating of nomenclature The websites of International Plant Names Index (IPNI), The Plant List and Tropicos were also consulted. The IUCN Red List Status of each species was also checked. Among the dominating species of the study site as many as six species were selected and the girth of each was measured conventionally at the breast height (GBH) i.e. near about 1.32m above ground surface. Tree diameter (D) was calculated by dividing  $\pi$  (22/7) by the actual marked girth of species (Bohre et al., 2012) i.e. GBH x (7/22). Biomass of the listed phanerophytes was calculated by simply applying bio-statistics based on allometric equations. Above ground Biomass i.e. AGB were measured by multiplying the biovolume to the green wood density of tree species. Tree bio-

| Serial<br>No. | Scientific Name                                 | Family                                                     | Common<br>Name     | IUCN Red List Status                                          | Total<br>no.<br>8 |  |
|---------------|-------------------------------------------------|------------------------------------------------------------|--------------------|---------------------------------------------------------------|-------------------|--|
| 1.            | A Death                                         | Fahaaaaa                                                   | Ear leaf           | Least Concern Version                                         |                   |  |
|               | Acacia auriculiformis Benth.                    | Fabaceae                                                   | acacia             | 3.1, Pop trend : Stable                                       |                   |  |
| 2.            | <i>Acacia nilotica</i> (L.) Willd.<br>ex.Delile | Fabaceae Babool                                            |                    | Not yet assessed                                              | 2                 |  |
| 3.            | Acacia pinnata Link. (Unresolved)               | Fabaceae                                                   | climbing<br>wattle | Not Assessed                                                  | 10                |  |
| 4.            | Aegle marmelos (L.) Corrêa                      | Rutaceae                                                   | Bel                | Not Assessed                                                  | 9                 |  |
| 5.            | Aganosma acuminata G.Don                        | Apocynaceae                                                | Malati lata-       | Not yet assessed                                              | 1                 |  |
| 6.            | Ailanthus excelsa Roxb.                         | Simaroubaceae Tree of<br>Heaven,<br>Mahanimb               |                    | Not Assessed                                                  | 1                 |  |
| 7.            | Alangium lamarckii Thwaites                     | Alangiaceae                                                | Ankol              | Not yet assessed                                              | 1                 |  |
| 8.            | Albizia lebbeck (L.) Willd.                     | Fabaceae                                                   | Siris-             | Not Assessed                                                  | 1                 |  |
| 9.            | Albizia saman (Jacq.) Merr.                     | Mimosaceae                                                 | Rain Tree          | Not Assessed                                                  | 14                |  |
| 10.           | Aleurities mollucana (L.) Willd.                | Euphorbiaceae Candleberry,<br>Indian<br>walnut,<br>Kemiri, |                    | Not Assessed                                                  | 1                 |  |
| 11.           | Alstonia scholaris (L.) R. Br.                  | Apocynaceae Chattim                                        |                    | Lower Risk/Least<br>Concern, Version 2.3                      | 1                 |  |
| 12.           | Amherstia nobilis Wall.                         | Fabaceae                                                   | Urbasi             | Critically Endangered                                         | 1                 |  |
| 13.           | Anthocephalus indicus A.Rich.                   | Rubiaceae                                                  | Kadam              | Not yet assessed                                              | 1                 |  |
| 14.           | Aphanamixis polystachya (Wall.)<br>R. Parker    | Meliaceae                                                  | Pithraj Tree       | Not Assessed                                                  | 7                 |  |
| 15.           | Areca catechu L.                                | Arecaceae                                                  | Supari             | Not yet assessed                                              | 3                 |  |
| 16.           | Artocarpus heterophyllus Lam.                   | Moraceae                                                   | Jackfruit          | Not Assessed                                                  | 4                 |  |
| 17.           | Artocarpus lacucha BuchHam.                     | Moraceae                                                   | Lakoocha           | Not Assessed                                                  | 2                 |  |
| 18.           | Averrhoa carambola L.                           | Oxalidaceae Karmal                                         |                    | Not yet assessed                                              | 2                 |  |
| 19.           | Azardirachta indica A. Juss.                    | Meliaceae Neem                                             |                    | Not yet assessed                                              | 1                 |  |
| 20.           | <i>Barringtonia acutangula</i> (L.)<br>Gaertn.  | Lecythidaceae Hijal                                        |                    | Not Assessed                                                  | 3                 |  |
| 21.           | Bauhinia purpurea L.                            | Caesalpinaceae Koiral                                      |                    | Not yet assessed                                              | 1                 |  |
| 22.           | Borasus flabellifer L.                          | Arecaceae Toddy palm                                       |                    | Endangered B2ab(iii); D<br>Version 3.1 Pop trend :<br>Unknown | 5                 |  |
| 23.           | Bridelia retusa(L.) A. Juss.                    | Phyllanthaceae                                             | Geio               | Not yet assessed                                              | 5                 |  |
| 24.           | Brownea coccinea Jacq.                          | Fabaceae                                                   | Supti              | Not Assessed                                                  | 4                 |  |
| 25.           | Butea monosperma (Lam.) Taub.                   | Fabaceae                                                   | Palash             | Not Assessed                                                  | 1                 |  |
| 26.           | Cassia fistula L.                               | Fabaceae                                                   | Amaltas            | Not Assessed                                                  | 11                |  |
| 27.           | Casuarina equisetifolia L.                      | Casuarinaceae                                              | Belati-Jhau        | Not Assessed                                                  | 2                 |  |
| 28.           | Citrus maxima (Burm.) Merr.                     | Rutaceae                                                   | Chakotra           | Not Assessed                                                  | 1                 |  |
| 29.           | Congea tomentosa Roxb.                          | Asteraceae                                                 | Chinese thuja      | Not yet assessed                                              | 2                 |  |
| 30.           | <i>Cordia myxa</i> L.                           | Boraginaceae                                               | Bonary             | Not Assessed                                                  | 3                 |  |
| 31.           | Corypha utan Lam.                               | Arecaceae                                                  | Buri palm          | Not Assessed                                                  | 1                 |  |
| 32.           | Couroupita guianensis Aubl.                     | Lecythidaceae                                              | Nagalinga          | Lower Risk/ Least<br>Concern Version 2.3                      | 1                 |  |
| 33.           | Dalbergia lanceolaria L. f.                     | Fabaceae                                                   | Takoli             | Least Concern Version 3.1                                     | 11                |  |

# Table 1 : Census of The Arborescent Trees of Golapbag Campus

| 34. | Diospyros evena Bakh.                        | Ebenaceae           | _             | Not yet assessed      | 2   |
|-----|----------------------------------------------|---------------------|---------------|-----------------------|-----|
| 35. | Diospyros malabarica (Desr.)                 | Ebenaceae           | Malabarebony  | Not Assessed          | 1   |
|     | Kostel.                                      |                     | ; Gaub, Desi  |                       | _   |
|     |                                              |                     | Gab           |                       |     |
| 36. | Discladium squarrosum (L.)                   | Ochnaceae           | -             | Not Assessed          | 2   |
|     | Tiegh.                                       |                     |               |                       |     |
| 37. | Drypetes roxburghii(Wall.)Hurus.             | Euphorbiaceae       | Jioysuta      | Not yet assessed      | 22  |
| 38. | Ficus benghalensis L.                        | Moraceae            | Bot           | Not Assessed          | 16  |
| 39. | Ficus racemosa L.                            | Moraceae            | Goolar        | Not Assessed          | 2   |
| 40. | Ficus religiosa L.                           | Moraceae            | Peepal        | Not Assessed          | 2   |
| 41. | Gelonium multiflorum A. Juss.                | Euphorbiaceae       | Ban Naranga   | Not yet assessed      | 1   |
| 42. | Glochidium hirsutum                          | Euphorbiaceae       | -             | Not yet assessed      | 2   |
| 43. | <i>Grewia asiatica</i> L.                    | Malvaceae           | Falsa         | Not Assessed          | 5   |
| 44. | Holarrhena pubescens Wall. ex G.             | Apocynaceae         | Indrajao      | Least Concern Version | 3   |
| 45. | Don.<br>Holoptelea integrifolia Planch.      | Ulmaceae            | Nata karanja  | 3.1<br>Not Assessed   | 4   |
| 43. | (Unresolved)                                 | Unnaceae            | Inata Karanja | Not Assessed          | 4   |
| 46. | Kleinhovia hospita L.                        | Sterculiaceae       | Bola          | Not yet assessed      | 1   |
| 47. | Lagerstroemia speciosa (L.) Pers.            | Lythraceae          | Jarul         | Not Assessed          | 53  |
| 48. | Litchi chinensis Sonn.                       | Sapindaceae         | Lichi         | Not yet assessed      | 2   |
| 49. | Litsea glutinosa(Lour) C.B.Rob.              | Lauraceae           | Bolly beech   | Not yet assessed      | 3   |
| 50. | Livistona chinensis (Jacq.)                  | Arecaceae           | Fountain palm | Not yet assessed      | 1   |
|     | R.Br.ex.Mart.                                |                     |               |                       |     |
| 51. | Magnolia champaca (L.) Baill. ex             | Magnoliaceae        | champa        | Not yet assessed      | 1   |
|     | Pierre                                       |                     |               |                       |     |
| 52. | Mallotus roxburghianus Müll.Arg.             | Euphorbiaceae       |               | Not Assessed          | 4   |
| 53. | Mangifera indica L.                          | Anacardiaceae       | Aam           | Not Assessed          | 20  |
| 54. | <i>Manilkara hexandra</i> (Roxb.)<br>Dubard. | Sapotaceae          | Khirni        | Not Assessed          | 5   |
| 55. | <i>Markhamia stipulata</i> (Wall.)<br>Seem.  | Bignoniaceae -      |               | Not Assessed          | 31  |
| 56. | Melia azadirachta L.                         | Meliaceae           | Neem          | Not yet assessed      | 1   |
| 57. | Mena azaarrachia L.<br>Mesua ferrea L.       | Calophyllaceae      | Nag kesar     | Not Assessed          | 1   |
| 58. | Mimusops elengi L.                           | Sapotaceae          | Bakul         | Not Assessed          | 21  |
| 59. | Mitragyna parvifolia (Roxb.)                 | Rubiaceae           | Kadamb        | Not Assessed          | 1   |
| 57. | Korth.                                       | Rublaceae           | Rudullio      | 100110505504          | 1   |
| 60. | Morinda citrifolia L.                        | Rubiaceae           | Hurdi         | Not Assessed          | 4   |
| 61. | Murraya paniculata (L.) Jack.                | Rutaceae            | Kunti         | Not yet assessed      | 2   |
| 62. | Murraya paniculata (L.) Jack.                | Rutaceae            | Kamini        | Not Assessed          | 2   |
| 63. | Naringi                                      | Rutaceae            | Naringi mul   | Not yet assessed      | 1   |
|     | crenulata(Roxb.)D.H.Nicolson                 |                     | 0             | 2                     |     |
| 64. | Nyctanthes arbor-tristis L.                  | Oleaceae Har singar |               | Not Assessed          | 1   |
| 65. | Pavetta indica L.                            | Rubiaceae           | Jui           | Not yet assessed      | 1   |
| 66. | Peltophorum ferrugineum                      | Fabaceae            | Peela         | Not Assessed          | 1   |
|     | (Decne.) Benth.                              |                     | gulmohar      |                       |     |
| 67. | Peltophorum pterocarpum (DC.)                | Fabaceae            | Peela         | Not yet assessed      | 1   |
|     | K.Heyne                                      |                     | gulmohar      |                       |     |
| 68. | Phoenix sylvestris (L.) Roxb.                | Arecaceae           | Kharjura      | Not Assessed          | 1   |
| 69. | <i>Plumeria obtusa</i> L.                    | Apocynaceae         | Kathgolop     | Not Assessed          | 2   |
| 70. | Polyalthia longifolia (Sonn.)<br>Thwaites    | Annonaceae Ashok    |               | Not Assessed          | 375 |
| 71. | Pongamia glabra L.                           | Fabaceae            | Karanj        | Not yet assessed      | 7   |

| 72. | <i>Pterospermum acerifolium</i> (L.) Willd.                          | Malvaceae           | Muskanda             | Not Assessed                          | 5  |
|-----|----------------------------------------------------------------------|---------------------|----------------------|---------------------------------------|----|
| 73. | Pterygota alata (Roxb.) R.Br.                                        | Sterculiaceae       | Tula                 | Not yet assessed                      | 2  |
| 74. | Putranjiva roxburghii Wall.                                          | Putranjivaceae      | Pitranjiva           | Not Assessed                          | 34 |
| 75. | <i>Roystonia regia</i> (Kunth.) O. F.<br>Cook                        | Arecaceae           | Royal palm           | Not Assessed                          | 14 |
| 76. | Saraca asoca (Roxb.) Willd.                                          | Fabaceae Sita ashok |                      | Vulnerable B1 + 2c ,<br>Version 2.3   | 64 |
| 77. | Schleichera oleosa (Lour)Oken                                        | Sapindaceae         | Kusum                | Not yet assessed                      | 1  |
| 78. | Senna siamea (Lam.) H. S. Irwin & Barneby                            | Fabaceae            | Kassod               | Not Assessed                          | 21 |
| 79. | Spondias dulcis Parkinson.                                           | Anacardiaceae       | Hog plums            | Not Assessed                          | 1  |
| 80. | Sterculia urens Roxb.                                                | Malvaceae           | Kulu                 | Not yet assessed                      | 5  |
| 81. | Streblus asper Lour.                                                 | Moraceae            | Shewra               | Not Assessed                          | 7  |
| 82. | Swietenia macrophylla King.                                          | Meliaceae           | Honduran<br>mahogani | Vulnerable A1cd + 2cd;<br>Version 2.3 | 3  |
| 83. | Swietenia mahogani L.                                                | Meliaceae           | Mahogani             | Not Assessed                          | 80 |
| 84. | Symplocos racemosa Roxb.                                             | Symplococeae        | Lodhra               | Not yet assessed                      | 1  |
| 85. | <i>Syzygium aqueum</i> (Burm. f.) Alston.                            | Myrtaceae           | Golapjaam            | Not Assessed                          | 3  |
| 86. | <i>Tabebuia aurea (Silva Manso)</i><br>Benth. et Hook.f. ex S. Moore | Bignoniaceae        | Tree of Gold-        | Not yet assessed                      | 1  |
| 87. | Tamarindus indica L.                                                 | Fabaceae            | Telul                | Not yet assessed                      | 2  |
| 88. | Tectona grandis L. f.                                                | Lamiaceae           | Saguna               | Not Assessed                          | 4  |
| 89. | Thunbergia coccinea Wall.                                            | Acanthaceae         | Neel lota            | Not yet assessed                      | 1  |
| 90. | Trema orientalis (L.) Blume.                                         | Cannabaceae         | Chikan               | Not yet Assessed                      | 5  |
| 91. | Wrightia tomentosa<br>(Roxb)Roem.& Schult                            | Apocynaceae         | _                    | Not yet assessed                      | 1  |

volume (TBV) value was established by multiplication of square of diameter with height of phanerophytes to factor 0.4.

Bio-volume  $(T_{BV}) = 0.4 \text{ X D}^2 \text{ x H}$ AGB=Wood density x  $T_{BV}$ 

Where: D is calculated from GBH, assuming the trunk to be cylindrical, H = Height in meter. Height is measured with the help of the instrument Theodolite. Wood density is used from Global wood density database (Zanne et al., 2009). The standard average density of 0.6 gm/ cm3 was applied wherever the density value was not available for tree species. The below ground biomass was calculated by multiplying the above ground biomass (AGB) by 0.26 factors as the root: shoot ratio (Hangarge et al., 2012).

## BGB = AGB x 0.26

Total biomass is the sum of the above and below ground biomass (Sheikh et al, 2011).

Total Biomass (TB)=Above Ground Biomass + Below Ground Biomass.

Indian J.Sci.Res. 7 (1): 67-75, 2016

Carbon Estimation Generally, for any plant species 50% of its biomass is considered as carbon (Pearson et al., 2005) i.e.Carbon Storage/ Carbon sequestration potential=Biomass/2

## **RESULTS AND DISCUSSION**

In the inventory of tree species in the Golapbag campus (Table 1) includes as many as 91 species belonging to 82 genera of 39 families could be included. Of the total species no less than 85 species of 76 genera representing 38 families are dicotyledonous and 6 species of one family (Arecaceae) are monocotyledonous. Taxonomic analysis of the trees reveals dominance of Dicots over Monocots at the levels of species, genus and families, the values being 14:1; 12.66:1 and 38:1 respectively (Table 2 and Figure 1).

Many of these species are botanically interesting, attractive and potentially sources of various phytoresources and aesthetic pleasure. However the IUCN Red List Status of 82 Campus trees is yet to be determined and 3 are least

| Taxa    | Dicots | Monocots | <b>Ratio Dicots: Monocots</b> |  |  |
|---------|--------|----------|-------------------------------|--|--|
| Species | 84     | 6        | 14:1                          |  |  |
| Genus   | 76     | 6        | 12.66:1                       |  |  |
| Family  | 38     | 1        | 38:1                          |  |  |

Table 2 : Taxonomic Analysis of The Trees in Golapbag Campus

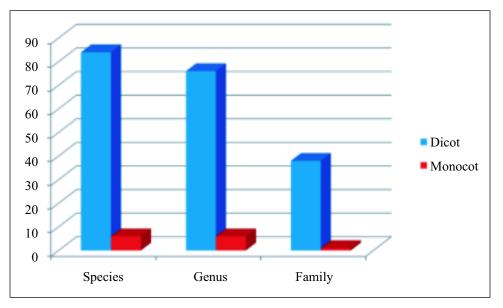



Figure 1: Taxonomic Analysis Showing Dicot-monocot Ratio

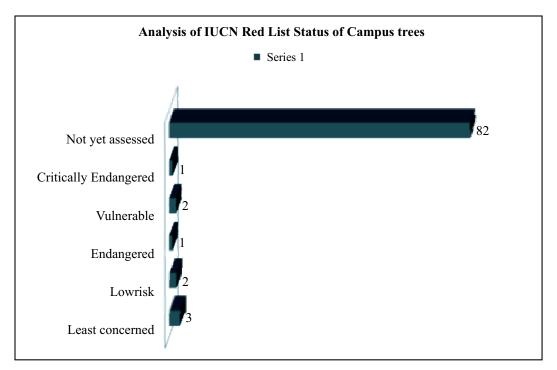



Figure 2 : Analysis of IUCN Red List Status of Campus Trees.

| Name of plant       | Plant<br>No. | GBH<br>(in<br>meter) | Diame<br>ter (in<br>meter) | Height<br>(in<br>meter) | T <sub>BV</sub><br>(m <sup>3</sup> ) | AGB in<br>Kg | BGB<br>(Kg) | TB<br>(Kg) | Carbon<br>Storage<br>(Gram) | Mean<br>value of<br>Carbon<br>Storage<br>(Gram) |
|---------------------|--------------|----------------------|----------------------------|-------------------------|--------------------------------------|--------------|-------------|------------|-----------------------------|-------------------------------------------------|
| Cassia fistula L.   | 1            | 0.80                 | 0.2545                     | 9.1                     | 0.2358                               | 0.1414       | 0.0367      | 0.1781     | 89.05                       | 89.92                                           |
|                     | 2            | 1.05                 | 0.3340                     | 10.1                    | 0.4509                               | 0.2705       | 0.0703      | 0.3408     | 170.4                       |                                                 |
|                     | 3            | 0.72                 | 0.2290                     | 10.3                    | 0.2162                               | 0.1297       | 0.0337      | 0.1634     | 81.70                       |                                                 |
|                     | 4            | 0.30                 | 0.0954                     | 10.1                    | 0.0368                               | 0.0220       | 0.0057      | 0.0277     | 13.85                       |                                                 |
|                     | 5            | 0.75                 | 0.2386                     | 9.25                    | 0.2107                               | 0.1264       | 0.0328      | 0.1592     | 79.60                       |                                                 |
| Dalbergia           | 1            | 1.03                 | 0.3277                     | 9                       | 0.3866                               | 0.2319       | 0.0603      | 0.2922     | 146.1                       | 227.7                                           |
| lanceolaria L. f.   | 2            | 0.73                 | 0.2322                     | 8.25                    | 0.1780                               | 0.1068       | 0.0277      | 0.1345     | 67.25                       |                                                 |
|                     | 3            | 2.10                 | 0.6681                     | 10.3                    | 1.8394                               | 1.1036       | 0.2869      | 1.3905     | 695.25                      |                                                 |
|                     | 4            | 0.46                 | 0.1463                     | 4.2                     | 0.0359                               | 0.0215       | 0.0056      | 0.0271     | 13.55                       |                                                 |
|                     | 5            | 1.16                 | 0.3690                     | 10.4                    | 0.5667                               | 0.3400       | 0.0884      | 0.4284     | 214.2                       |                                                 |
| Ficus benghalensis  | 1            | 3.77                 | 1.1995                     | 10.3                    | 5.9283                               | 3.5569       | 0.9248      | 4.4817     | 2240.85                     | 3847.02                                         |
| L.                  | 2            | 2.55                 | 0.8113                     | 8                       | 2.1065                               | 1.2639       | 0.3286      | 1.5925     | 796.25                      |                                                 |
|                     | 3            | 4.02                 | 1.2790                     | 9.1                     | 5.9553                               | 3.5731       | 0.9290      | 4.5021     | 2251.05                     |                                                 |
|                     | 4            | 3.35                 | 1.0659                     | 12                      | 5.4535                               | 3.2721       | 0.8507      | 4.1228     | 2061.40                     |                                                 |
|                     | 5            | 6.86                 | 2.1827                     | 16.5                    | 31.444                               | 18.866       | 4.9051      | 23.771     | 11885.55                    |                                                 |
| Mimusops elengi L.  | 1            | 1.95                 | 0.6204                     | 9.25                    | 1.4243                               | 0.8545       | 0.2221      | 1.0766     | 538.30                      | 903.5                                           |
|                     | 2            | 1.00                 | 0.3181                     | 7                       | 0.2834                               | 0.1700       | 0.0442      | 0.2142     | 107.10                      |                                                 |
|                     | 3            | 2.45                 | 0.7795                     | 9.3                     | 2.2606                               | 1.3596       | 0.3534      | 1.7130     | 856.50                      |                                                 |
|                     | 4            | 3.80                 | 1.2090                     | 9.2                     | 5.3797                               | 3.2278       | 0.8392      | 4.0670     | 2033.5                      |                                                 |
|                     | 5            | 2.67                 | 0.8495                     | 9                       | 2.5982                               | 1.5589       | 0.4053      | 1.9642     | 982.10                      |                                                 |
| Roystonia regia     | 1            | 1.80                 | 0.5727                     | 16                      | 2.0993                               | 1.2595       | 0.3274      | 1.5869     | 793.45                      | 554.41                                          |
| (Kunth.) O. F. Cook | 2            | 1.33                 | 0.4231                     | 15                      | 1.0744                               | 0.6446       | 0.1676      | 0.8122     | 406.10                      |                                                 |
|                     | 3            | 1.35                 | 0.4295                     | 15.1                    | 1.1144                               | 0.6686       | 0.1738      | 0.8424     | 421.20                      |                                                 |
|                     | 4            | 1.52                 | 0.4836                     | 15.7                    | 1.4689                               | 0.8813       | 0.2291      | 1.1104     | 555.20                      |                                                 |
|                     | 5            | 1.57                 | 0.4995                     | 15.8                    | 1.5771                               | 0.9462       | 0.2460      | 1.1922     | 596.10                      |                                                 |
| Senna siamea        | 1            | 1.80                 | 0.5727                     | 8.25                    | 1.0824                               | 0.6494       | 0.1688      | 0.8182     | 409.10                      | 449.12                                          |
| (Lam.) H. S. Irwin  | 2            | 1.90                 | 0.6045                     | 9.1                     | 1.3303                               | 0.7981       | 0.2075      | 1.0056     | 502.80                      |                                                 |
| & Barneby           | 3            | 1.22                 | 0.3881                     | 9.25                    | 0.5575                               | 0.3345       | 0.0869      | 0.4214     | 210.70                      |                                                 |
|                     | 4            | 2.00                 | 0.6363                     | 10                      | 1.6198                               | 0.9718       | 0.2526      | 1.2244     | 612.20                      |                                                 |
|                     | 5            | 1.80                 | 0.5727                     | 10.3                    | 1.3514                               | 0.8108       | 0.2108      | 1.0216     | 510.80                      |                                                 |

Table 2: Carbon Sequestration Potential of Six Dominating Species of Golapbag Campus

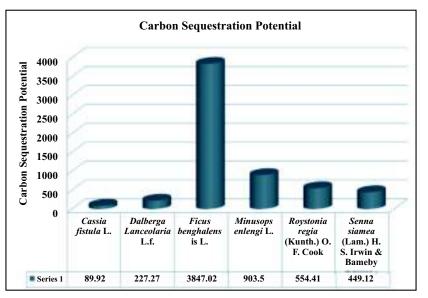



Figure 3: Carbon Sequestration Potential of Six Dominating Species of Golapbag Campus.

concerned (Table 1 and Figure 2). Threat perceptions of remaining six species being alarming their protection and conservation are deemed essential.

The carbon sequestration potential of 5 individual trees belonging to each of six different genera was determined of which *Ficus benghalensis* has registered the highest (3847.02 gm) and *Cassia fistula* the lowest values(89.92 gm). Carbon sequestration values of other species were 227.27, 903.5, 554.41, 449.12 grams incase of *Dalbergia sisso, Mimusops elengi, Roystonia regia* and *Senna siamea* respectively. So, it can be concluded that each of the tree species has considerable contribution in subduing the level of CO<sub>2</sub> in the campus and cooling the ambience.

# CONCLUSION

Golapbag campus of Burdwan University is a biodiversity rich area with a lot of phytoresources including medicinal plants (Hotwani and Mukherjee, 2005a and 2005b). Moreover there are quite a significant number of arborescent species (Namhata and Mukherjee, 1990). It is also seen from publications on trees of Golapbag campus that carbon sequestration potential varies from species to species (Das and Mukherjee, 2015). These authors found that Swietenia mahagoni successively followed by Albezia saman, Polyalthia longifolia, Drypetes roxburghii, Mangifera indica, Saraca asoca, Dolichandrone stipulata and Lagestroemia speciosa are with high efficiency to sequester atmospheric CO2 and the present author registers Ficus benghalensis as the best in this regard. The entire association of plants in the campus contributes enormously to the greenery of the campus thus generating aesthetic pleasure. Many of them have proved them to be useful in monitoring and scavenging air pollution (Ghosh and Mukherjee, 2003) in and around Golapbag Campus. Some of the species, especially Amherstia nobilis, have been perceiving threats of extinction mainly from anthropogenic activities in the campus they deserve attention for their protection and sustenance along with other species.

## ACKNOWLEDGEMENTS

The authors are thankful to the Head, Department of Botany for providing all facilities and inspiring cooperation. Sincere gratitude is also expressed to the Head, Department of Geography of the University of Burdwan for cooperation.

### REFERENCES

- Bennet S. S. R., 1987. Name Changes in Flowering Plants of India and Adjacent Regions. Tri seas Publishers, Dehradun.
- Bohre P., Chaubey O.P. & Singhal P. K., 2012. Biomass Accumulation and Carbon Sequestration in Dalbergia sissoo Roxb. International Journal of Bio-Science and Bio-Technology 3: 29-44.
- Das M. & Mukherjee A., 2015. Carbon sequestration potential with height and girth of selected trees in the Golapbag Campus, Burdwan, West Bengal (India). Indian J.Sci.Res. 10(1): 53-57.
- Ghosh T. & Mukherjee, A., 2003. Evaluation of some plant species in bio-monitoring air pollution. Environment and Ecology 21(4): 747-751.
- Guha Bakshi D. N., 1984. Flora of Murshidabad District, West Bengal, India. Scientific publishers, Jodhpur, India.
- Hangarge L. M., D. K. Kulkarni, V. B. Gaikwad, D. M.Mahajan & Nisha Chaudhari, 2012. Carbon Sequestration potential of tree species in Somjaichi Rai (Sacred grove) at Nandghur village, in Bhor region of Pune District, Maharashtra State, India. Annals of Biological Research, (7): 3426-3429.
- Hotwani G. & Mukherjee A., 2005a. Studies on medicinal plants of Burdwan University Campus. J. Botan. Soc. Bengal **59** (1&2): 13-22.
- Hotwani G. and Mukherjee A., 2005b. Inventorization of plants in the campus of Burdwan University on the basis of diseases cured by them. Indian J. Applied & Pure Bio., **20** (1): 59-66.
- Namhata D. and Mukherjee, A., 1990. An enumeration of the Angiosperms in the campus of the university of Burdwan, J. Econ. Tax. Bot., **14**: 41-47.
- Pandya Ishan Y., Salvi H., Chahar O. & Vaghela N., 2013
  Quantative Analysis on Carbon Storage of 25
  Valuable Tree Species of Gujrat, Incredible India. Indian J. Sci. Res., 4(1): 137-141.

- Pearson T.R.H., Brown S., Ravindranath N.H., 2005. Integrating carbon benefits estimates into GEF Projects:1-56.
- Prain D., 1903.Bengal Plants, I and II. Government of India, Calcutta.
- Prentice I. C., Farquhar G.D., Fasham M.J.R., Goulden M.L., Heimann M, Jaramillo V.J., Kheshgi H.S., Le Quere C., Scholes R.J. & Wallace D.W.R., 2001. The carbon cycle and atmospheric carbon dioxide. The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, C a m b r i d g e . 1 8 3 2 3 7 . w w w. Worldagroforestry.org
- Sheikh Mehraj A, Kumar Munesh, Bussman Raine and Wand Todaria NP, 2011. Carbon Balance and Management. doi.:10.1186/1750-0680-6-15.

- Vashum K T, Jayakumar S, 2012. Methods to Estimate Above-Ground Biomass and Carbon Stock in Natural Forests - A Review. J EcosystEcogr.,2(4): doi:10.4172/2157-7625.1000116
- Watson RT& Core Writing T, 2001. Climate change 2001: Synthesis report - An Assessment of the Intergovernmental Panel of Climate Change. Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge. 35-145(397).
- Zanne A. E., Lopez-Gonzalez G., Coomes D. A., Ilic J., Jansen S. and Lewis S. L., Miller R. B., Swenson N. G., Wiemann M. C. & Chave J., 2009. Global wood density database. Towards a worldwide wood economics spectrum. Ecology Letters, 12(4): 351-366.