CERTAIN EXPANSION OF BASIC HYPERGEOMETRIC FUNCTIONS OF TWO VARIABLES

D.KANDU¹

Department of Applied Sciences, M.M.M. Engineering College, Gorakhpur, U.P.,India E-mail: kandudevendra891@gmail.com

ABSTRACT

In this paper, certain expansions involving generalized basic Hypergeometric Series of two variables have been established. These expansions include, as special cases, many of known expansions of basic hypergeometric functions.

KEYWORDS: Basic hypergeometric functions, well poised q-analogue expansions

A basic hypergeometric function(Agarwal, 1959) of two variables is defined as:

$$\Phi \begin{bmatrix} (a):(c);(d);\\ (b):(e);(f); \end{aligned} q, x, y \end{bmatrix} = \sum_{s=0}^{\infty} \sum_{t=0}^{\infty} \frac{((a;q))_{s+t}((c;q))_{s}((d;q))_{t} x^{s} y^{t}}{((b;q))_{s+t}(e;q))_{s}((f;q))_{t}(q;q)_{a}(q;q)_{t}}
(|x| < 1, |y| < 1, |q| < 1)
(\alpha; q)(\alpha; q)_{n} = (1 - \alpha)(1 - \alpha q)(1 - \alpha q^{2}) \ldots (1 - \alpha q^{n-1})
(\alpha; q)_{0} = 1; \quad (a;q)_{-n} = \frac{(-1)^{n} q^{n(n+1)/2}}{a^{n} (q/a;q)_{n}}$$

MAIN RESULTS

Where

In this section, following results have been established(Agarwal.1953):

$$\sum_{r=0}^{\infty} \frac{((a;q))_{2r}(\alpha;q)_r \ 2\alpha - \beta;q)_r(\alpha;q)_r \ (\alpha - \frac{1}{2};q)_r x^r y^r q^{u(r)}}{((d;q))_{2r}(q;q)_r (\alpha + r - 1;q)_r (2\alpha;q)_{2r}}$$

$$\times \emptyset \begin{bmatrix} (a) + 2r : \alpha + r \ , 2\alpha - \beta + r, \alpha + r, \alpha + \frac{1}{2} + r; \\ (d) + 2r : 2\alpha + 2r \ ; 2\alpha + 2r \ ; \\ (d), \alpha : 2\alpha - \beta; \alpha + \frac{1}{2}; \\ (d), 2\alpha : - ; - ; \\ u(r) = r(\beta + r - 1) \end{bmatrix} \dots (1)$$

where

$$\begin{split} & \sum_{\mathbf{r}=0}^{\infty} \frac{((\mathbf{a};\mathbf{q}))_{\mathbf{r}} (\boldsymbol{\alpha}-\mathbf{1};\mathbf{q})_{\mathbf{r}} (\boldsymbol{\delta}:\mathbf{q})_{\mathbf{r}} (1-\boldsymbol{\beta};\mathbf{q})_{\mathbf{r}} \mathbf{x}^{\mathbf{r}} \mathbf{y}^{\mathbf{r}} \mathbf{q}^{\mathbf{r}(1-\boldsymbol{\alpha}-\boldsymbol{\delta})}}{((\mathbf{d};\mathbf{q}))_{\mathbf{r}} (\mathbf{q};\mathbf{q})_{\mathbf{r}} (\boldsymbol{\alpha}+\boldsymbol{\delta}-\boldsymbol{\beta};\mathbf{q})_{\mathbf{r}} (\boldsymbol{\alpha}-\boldsymbol{\beta};\mathbf{q})_{\mathbf{r}}} \\ \times & \begin{bmatrix} (a)+r & ; 1-\beta+r : 1-\beta;b; \\ (d)+r, & \boldsymbol{\alpha}-\beta+r : & ; e \end{bmatrix} \boldsymbol{x} \boldsymbol{q}^{\beta-\boldsymbol{\alpha}-\boldsymbol{\delta}}, \boldsymbol{y} \end{bmatrix} \end{split}$$

¹Corresponding author

$$=\emptyset\begin{bmatrix} (a), 1-\beta+\delta, 1-\beta; & b; & xq^{\beta-\alpha-\delta}, y \end{bmatrix} ...(2.)$$

$$\sum_{r=0}^{\infty} \frac{((a;q))_{2r}(b-e;q)_{r}(b-c;q)_{r}(e+c-b;q)_{r}x^{r}y^{r}q^{u(r)}}{(q;q)_{r}(b+r-1;q)_{r}((d;q))_{2r}(b;q)_{2r}}$$

$$\times\emptyset\begin{bmatrix} (a)+2r:b-e+r,b-c+r,b-e+r,e+c-b+r; & xq^{e+c-b}, y \end{bmatrix}$$

$$=\emptyset\begin{bmatrix} (a),b-e:b-;e+c-b; & xq^{e+c-b}, y \end{bmatrix} ...(3)$$

$$u(r)=r(c+r-1)$$

Where

PROOF OF RESULTS

To prove (2), left hand side can be written as:

$$\begin{split} & \sum_{r=0}^{\infty} \frac{((a;q))_{2r}(\alpha;q)_r \ (2\alpha-\beta;q)_r(\alpha;q)_r \ (\alpha-\frac{1}{2};q)_r x^r y^r q^{u(r)}}{((d;q))_{2r}(q;q)_r (2\alpha+r-1;q)_r (2\alpha;q)_{2r}} \\ & \times \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{((a+2r;q))_{m+n} (\alpha+r;q)_m (2\alpha-\beta+r;q)_m (\alpha+r;q)_n}{((d+2r;q))_{m+n} (2\alpha+2r;q)_m (2\alpha+2r;q)_n} \times \frac{(\alpha+\frac{1}{2}+r;q)_n x^m q^{m(\beta-\alpha-\frac{1}{2})} y^n}{(q;q)_m (q;q)_n} \\ & = \sum_{r=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{((a;q))_{2r+m+n} (2\alpha;q)_{2r} (\alpha-\frac{1}{2};q)_r}{((d;q))_{2r+m+n} (q;q)_r (2\alpha+r-1;q)_r (\alpha+\frac{1}{2};q)_r} \\ & \times \frac{(\alpha;q)_{r+m} (2\alpha-\beta;q)_{r+m} (\alpha;q)_{r+n} (\alpha+\frac{1}{2};q)_{r+n} x^{r+m} y^{r+n} q^{m(\beta-\alpha-\frac{1}{2})}}{(2\alpha;q)_{2r+m} (2\alpha;q)_{2r+n} (q;q)_m (q;q)_n} \end{split}$$

Which on putting r + m = s and r + n = t , becomes

which on putting
$$r+m=s$$
 and $r+n=t$, becomes
$$\sum_{s=0}^{\infty} \sum_{t=0}^{\infty} \frac{((a;q))_{s+t}(\alpha;q)_{s}(2\alpha-\beta;q)_{s}(\alpha;q)_{t}(\alpha+\frac{1}{2};q)_{r}x^{s}y^{t}q^{s(\beta-\alpha-\frac{1}{2})}}{((d;q))_{s+t}(2\alpha;q)_{s}(2\alpha;q)_{t}(q;q)_{s}(q;q)_{t}}$$

$$\times 4\emptyset_{3} \begin{bmatrix} 2\alpha-1, -\frac{2\alpha+1}{2}, q^{-s}; q^{-t}; \\ -\frac{2\alpha-1}{2}, 2\alpha q^{s}, & 2\alpha q^{t} \end{bmatrix}$$

Now summing inner 40_3 by Dixon theorem (Slater, 1966) the above expansion becomes:

$$\sum_{s=0}^{\infty} \sum_{t=0}^{\infty} \frac{((a;q))_{s+t}(\alpha;q)_{s}(2\alpha-\beta;q)_{s}(\alpha;q)_{t}(\alpha+\frac{1}{2};q)_{r}x^{s}y^{t}q^{s(\beta-\alpha-\frac{1}{2})}}{((d;q))_{s+t}(2\alpha;q)_{s}(2\alpha;q)_{t}(q;q)_{s}(q;q)_{t}} \times \frac{(\alpha q^{s};q)_{t}}{(2\alpha q^{s};q)_{t}}$$

Which is equal to right hand side of (2).

To prove (2), we write the left hand side as

$$\begin{split} & \sum_{r=0}^{\infty} \frac{\left((a;q) \right)_r (\alpha - 1;q)_r \; (\delta;q)_r (1 - \beta;q)_r \; x^r \; q^{(1 - \alpha - \beta)r.} y^r}{((d;q))_r (q;q)_r (\alpha + \delta - \beta;q)_r (\alpha - \beta;q)_r} \\ & \times \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{((a+r;q))_{m+n} (1 - \beta + r;q)_m (1 - \beta;q)_m (b;q)_n}{((d+r;q))_{m+n} (\alpha - \beta + r;q)_m (e;q)_n} \; \frac{x^m q^m (\beta - \alpha - \delta) y^n}{(q;q)_m (q;q)_n} \\ & = \sum_{r=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \frac{((a;q))_{r+m+n} (\alpha - 1;q)_r (\delta;q)_r (\alpha - \frac{1}{2};q)_r}{((d;q))_{r+m+n} (q;q)_r (\alpha + \delta - \beta;q)_{r+m} (e;q)_n} \\ & \times \frac{(1 - \beta;q)_m (b;q)_n x^{r+m} y^{r+n} q^m (\beta - \alpha - \delta)}{(q;q)_m (q;q)_n} \end{split}$$

Which after taking r + m = s and r + n = t, equals

After some simplification..

174 Indian J.Sci.Res.3(2): 173-176, 2012

KANDU: CERTAIN EXPANSION OF BASIC HYPERGEOMETRIC FUNCTIONS OF TWO VARIABLES

Now summing inner $3\phi_2$ with the help of q-analogue of Saalschutz theorem (Slater,1966)and(Verma,1964), the above expansion becomes :

$$\sum_{s=0}^{\infty} \sum_{t=0}^{\infty} \frac{((a;q))_{s+t} (1-\beta;q)_s (b;q)_t (1-\beta;q)_s \ q^{s(\beta-\delta-\alpha)} x^s y^t}{((d;q))_{s+t} (\alpha-\beta;q)_s (e;q)_t (q;q)_s \ (q;q)_t} \times \frac{(\beta-\alpha+1-s;q)_s (\beta-\delta-s;q)_s}{(\beta-s;q)_s (\beta-\alpha-\delta+1+s;q)_s}$$

Which after some simplification, yields the right hand side of (2).

To prove (2), we write its left hand side as:

$$\begin{split} \sum_{r=0}^{\infty} \frac{((a;q))_{2r} (b-e;q)_r \ (b-c;q)_r (e+c-b;q)_r \ x^r y^r q^{u(r)}}{(d;q)_r (q;q)_r (b+r-1;q))_r (b;q)_{2r}} \\ \times \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{((a+2r;q))_{m+n} (b-e+r;q)_m (b-c+r;q)_m (b-e;q)_n (e+c-b;q)_n}{((d+2r;q))_{m+n} (b+2r;q)_m (b+2r;q)_n} \times \frac{x^m y^n q^{m(e+c-b)}}{(q;q)_m (q;q)_n} \\ = \sum_{r=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{((a;q))_{2r+m+n} (b-e;q)_{r+m} (b-e;q)_{r+m} (e;q)_r}{((d;q))_{2r+m+n} (q;q)_r (b+r-1;q)_r (b-e;q)_r} \\ \times \frac{(b-e;q)_{r+n} (e+c-b;q)_{r+n} x^{r+m} y^{r+n}}{((b;q))_{2r+m} (b;q)_{2r+n} (q;q)_m (q;q)_n} q^{r(r+1)+r(c-r)+m(e+c-b)} \end{split}$$

$$\text{Which on taking } r+m=s \text{ and } r+n=t \text{ becomes}}$$

$$\sum_{s=0}^{\infty} \sum_{t=0}^{\infty} \frac{((a;q))_{s+t} (b-c;q)_s (b-e;q)_s (b-e;q)_t (e+c-b;q)_t}{((d;q))_{s+t} (b;q)_s (b;q)_t (q;q)_s} \times \frac{x^s y^t q^{s(e+c-b)}}{(q;q)_t} \\ \times \sum_{r=0}^{\infty} \frac{(b;q)_{2r} (e;q)_r (q^{-s};q)_r (q^{-t};q)_r}{(q;q)_r (b+r-1;q)_r (b-e;q)_r (bq^{t};q)_r} q^{r(b-e+s+t)}.$$

$$= \sum_{s=0}^{\infty} \sum_{t=0}^{\infty} \frac{((a;q))_{s+t} (b-c;q)_s (b-e;q)_s (b-e;q)_t (e+c-b;q)_t}{((d;q))_{s+t} (b;q)_s (b;q)_t (q;q)_s} \times \frac{x^s y^t q^{s(e+c-b)}}{(q;q)_t} \\ \times \delta \emptyset_5 \begin{bmatrix} b-1, \frac{b+1}{2} - \frac{b+1}{2}, e, q^{-s}, q^{-t}; q^{b-e+s+t} \\ \frac{b-1}{2}, -\frac{b-1}{2}, b-e, bq^s, bq^t; \end{bmatrix}$$

Now, summing well poised 60_5 with the help of known result (Chaundy,1942)),we get right side of (2).

SPECIAL CASES:

(i) If we let $q \to 1$ in the results(1) to (3), we get corresponding expansions for ordinary Hypergeometric function of two variables. (Burchnall, et al., 1940)

$$\begin{split} \sum_{r=0}^{\infty} \frac{((a))_{2r}(\alpha)_{r}(2\alpha-\beta)_{r}(\alpha)_{r}(\alpha-\frac{1}{2})_{r}x^{r}y^{r}}{((d))_{2r}(1)_{r}(\alpha+r-1)_{r}(2\alpha)_{2r}(\alpha+\frac{1}{2})_{r}} \times F \begin{bmatrix} (a)+2r:\alpha+r,2\alpha-\beta+r;\alpha+r,\alpha+\frac{1}{2}+r;x,y \end{bmatrix} \\ = F \begin{bmatrix} (a),\alpha:2\alpha-\beta;\alpha+\frac{1}{2}+r;x,y \end{bmatrix} & ...(4) \\ \sum_{r=0}^{\infty} \frac{((a))_{r}(\alpha-1)_{r}(\delta)_{r}(1-\beta)_{r}x^{r}y^{r}}{((d))_{r}(1)_{r}(\alpha+\delta-\beta)_{r}(\alpha-\beta)_{r}} \times F \begin{bmatrix} (a)+r;1-\beta+r,1-\beta;b;x,y \end{bmatrix} \\ = F \begin{bmatrix} (a):1-\beta+\delta,1-\beta;b;x,y \end{bmatrix} & ...(5) \\ \sum_{r=0}^{\infty} \frac{((a))_{2r}(b-e)_{r}(b-c)_{r}(e)_{r}(e+c-b)_{r}x^{r}y^{r}}{((1))_{r}(b+r-1)_{r}((d))_{2r}(b)_{2r}} \times F \begin{bmatrix} (a)+2r;b-e+r,b-c+r;b-e+r,e+c-b+r;x,y \end{bmatrix} \end{split}$$

175

$$=F\begin{bmatrix} (a), b-e: b-c; e+c-b; \\ (d), b: -; -; \end{bmatrix} ...(6)$$

Case (ii) Putting A = D = 0, y = x in (6), we get-

$$\sum_{r=0}^{\infty} \frac{(e;q)_{r}(b-e;q)_{r}(b-c;q)_{r}(e+c-b;q)_{r}x^{2r}q^{r(c+r-1)}}{(q;q)_{r}(b+r-1;q)_{r}(b;q)_{2r}} \times 2\emptyset_{1} \begin{bmatrix} b-e+r,b-c+r; xq^{e+c-b} \\ b+2r; \\ x+2\emptyset_{1} \end{bmatrix} \times 2\emptyset_{1} \begin{bmatrix} b-e+r,e+c-b; xq^{e+c-b} \\ b+2r; \\ x+2\emptyset_{1} \end{bmatrix} = \sum_{s=0}^{\infty} \sum_{t=0}^{\infty} \frac{(b-e;q)_{s+t}(b-c;q)_{s}(e+c-b;q)_{t}x^{s+t}q^{s(e+c-b)}}{(b;q)_{s+t}(q;q)_{s}(q;q)_{t}} \qquad ... (7)$$

Now, letting s + t = v in right hand side of (7), it is equal to

$$\begin{split} &= \sum_{s=0}^{\infty} \sum_{v=0}^{\infty} \frac{(b-e;q)_v \, (b-c;q)_s (e+c-b;q)_{v-s} x^v q^{s(e+c-b)}}{(b;q)_v (q;q)_s (q;q)_{v-s}} \\ &= \sum_{v=0}^{\infty} \frac{(b-e;q)_v (e+c-b;q)_v x^v}{(b;q)_v (q;q)_v} \sum_{s=0}^{\infty} \frac{(b-c;q)_s (e+c-b+v;q)_{-s} \, x q^{s(e+c-b)}}{(q;q)_s (1+v;q)_{-s}} \\ &= \sum_{v=0}^{\infty} \frac{(b-e;q)_v (e+c-b;q)_v x^v}{(b;q)_v (q;q)_v} \times 2 \emptyset_1 F \begin{bmatrix} b-c,q^{-v};\\ 1+b-e-c-v; q \end{bmatrix} \end{split}$$

Again summing the inner 201 by the basic analogue of Gauss theoem (Slater,1966) we have

$$\sum_{r=0}^{\infty} \frac{(e;q)_{r}(b-e;q)_{r}(b-c;q)_{r}(e+c-b;q)_{r}x^{2r}q^{r(c+r-1)}}{(q;q)_{r}(b+r-1;q)_{r}(b;q)_{2r}} \\ 2\phi_{1} \begin{bmatrix} b-e+r,b-c+r; xq^{e+c-b} \end{bmatrix} \times 2\phi_{1} \begin{bmatrix} b-e+r,e+c-b+r; \\ b+2r; \end{bmatrix} = 2\phi_{1} \begin{bmatrix} e,b-e; \\ b; \end{bmatrix} ...(8)$$

Which is equivalent to a result due to (Jackson, 1942 and 1944)

REFERENCES

Agarwal N.,1959.Certain basic Hypergeometric type, Jour.of London Mathematical Society:34

Agrawal R.P.,1953 Some Hypergeometric identities, Annales de asociete scientifique de Bruxellas,67:1-21

Burchnall J.Wand and Chaundy, T.W., 1940. Expansions of Appell's double Hypergeometric Functions, jour. of Maths (Oxford), 11:249.

Chaundy T.W.,1942. Expansion of Hypergeometric Functions, Jour. Of maths (Oxford), 15:159-171.

Jackson F.H.,1944. On basic Double Hypergeometric Functions, Jour of maths (Oxford),15:49-61

Jackson F.H.,1942. On basic double Hypergeometric FunctionsII.Jour. of Maths (Oxford),13:69-82.

Slater L.J.,1966. Generalized Hypergeometric Functions. Cambridge University Press, Cambridge.

Verma A.,1964. Certainexpansionsof generalized basic Hypetrgeometric Functions, Jour. Duke Maths 31.

176 Indian J.Sci.Res.3(2): 173-176, 2012