
Indian J.Sci.Res. 20(2): 227-232, 2018 ISSN: 0976-2876 (Print)

 Review Article ISSN: 2250-0138(Online)

1Corresponding Author

IMPROVE THE EXECUTION TIME BY USING GPU FOR COMPLEX APPLICATION

WITH SIMD

RAJESH TIWARI
a1
, MANISHA SHARMA

b
 AND KAMAL K. MEHTA

c

aShri Shsnkaracharya Technical Campus Bhilai, Chhattisgarh, India
bBhilai Institute of Technology, Durg (C.G.), India

cO. P. Jindal University Raigarh, (C.G.), India

ABSTRACT

Now a days sequential processing is not sufficient for a large data computation in the area of computer science and

technology. To solve the computation problem for large data, the necessity for high-performance calculation is growing day by day.

Few common application where high-performance computing is used are Weather Forecasting, Quantum Physics, Climate

Research, Heat Distribution Problem etc. An architectural framework has been proposed by NVIDIA to join the power of GPUs

with CPUs to improve the execution time. GPUs were previously used only for Graphics Application like Computer games,

Multimedia and graphics but now GPU has been used for high-performance computation work. This paper focuses on different

techniques for Matrix multiplication operation. This paper performs the Matrix multiplication on resources like CPU, GPU

(Shared and Non-shared). Finally the results of execution time with CPU, Shared memory and Non- shared memory are compared

and find that the Non – shared memory gives the better result for bulk data.

KEYWORDS: CPU, GPU, Shared Memory, SIMD

Parallel processing is the method of

processing program instructions by dividing them into

multiple small segments and executes that segments on

multiple processors this results the minimum execution

time. In the older version (Sequential) of computers, only

one program can executed at a time. To solve the complex

problem the sequential technique is not used, so the new

technique to solve such problem is parallel technique. There

are two types of program, one is computation intensive and

the other is I/O intensive program. A computation intensive

program consider only computation time and I/O intensive

program consider only the time spend during the input and

output. The interleaved execution of both (computation

intensive and I/O intensive) programs together allowed in

parallel processing. When the computer system starts an I/O

operation, the system is in waiting state till the operation

complete. During this time, the compute intensive program

starts execution and the utilized the waiting time of the

system. This cause in reduction of execution time.

Matrices and matrix operations are widely used in

mathematical modeling of various processes, phenomena,

and systems. Matrix calculations are the basis of many

scientific and engineering calculations few of them are

Computational Mathematics, Physics, Economics etc. One

of the fundamental building block for scientific computing

is the Matrix multiplication and it is one of the most

important approaches to understanding parallel

programming in GPU [Djinevski et. al., 2013] [Sooknanan

and Joshi, 2016].

The concurrent use of more than

one processor to execute a program is an example of SIMD

(single instruction stream and multiple data stream) process

[Sartori and Kumar, 2013]. Generally, the parallel

processing makes a program to execute quicker because of

more CPUs are running [Shah and Patel, 2014] parallel. In

practice, it is a lot difficult to divide a program in such a way

that separate CPUs can execute different portions of the

program without interfering with each other.

A parallel computation engine is used in GPUs to

carries out the complex computational problem in less time

than it would have if same problem would have been

executing on a single CPU [Cui et. al., 2009] [Shah, 2015].

GPUs have been previously utilized mainly for playing

games or the application where large graphics resolutions

are required. Now GPU stepped into the fields that need

high-performance computation. Fields such as Medical

Image, Weather forecasting, and System of linear equations

are some fields, where the systems require the

high-performance computation to use the possible power of

GPUs by which system solve the existing and current

problems.

 CUDA is a library provided by NVIDIA, it

provides extended functionalities in C language by adding

CUDA specific functions. This paper shows the different

optimization techniques of matrix multiplication [Ohshima

et. al., 2006] using CPU, matrix multiplication on GPU

using Shared and Non-Shared memory which increases

TIWARI ET. AL.: IMPROVE THE EXECUTION TIME BY USING GPU FOR COMPLEX APPLICATION WITH SIMD

Indian J.Sci.Res. 20(2): 227-232, 2018

floating portion for optimizing a N*N size matrix. N*N

matrix means having N rows and N columns.

GPU and CUDA

 Compute Unified Device Architecture is a library

provided by NVIDIA to execute processes in parallel

manner [Ha and Han, 2013]. This is an application

programming interface (API) to help communication

between device and user. There are CUDA specific

functions or methods defined which meant to run on CUDA

library only. These are used along with C and C++

programming language. To convert a single processor

specific program into CUDA capable programs the

programmer needs to modify it accordingly. The CUDA

program is generally divided into two parts: the main

program executes in the CPU, whereas the parallel portion

of the program is executed in GPU. This GPU part is called

by the main program and data is sent to GPU for execution

where the instructions are executed on the given data, after

the calculation result is sent back to CPU

[https://developer.nvidia.com].

GPU (Graphics Processing Unit) was primarily

developed to fulfill the need of algorithms used in computer

graphics. It has hundreds of cores which are able to execute

multiple threads simultaneously. Later it was proposed that

this technology can be useful for non-graphic process also if

one can divide a single process into multiple threads and

distribute them to multiple processors, the overall

computation time can be reduced drastically. There are

several types of memory present in the GPU [Liu and

Vinter, 2014] [Zha and Sahni, 2013] [Barberis et. al., 2013]

like device memory, shared memory, constant cache,

texture cache, and registers [Lo et. al., 2013] [Salim et. al.,

2015] [Anh et. al., 2015] [Eberhardt and Hoemmen, 2016].

To manipulate data in this memory and to use the multiple

cores to their programmers must write the CUDA programs

very carefully.

Types of CUDA Memory

CUDA devices have different memory spaces,

Figure 1 shows the memory organization and basic units of

CUDA model. Global, local, texture, constant, shared and

register memory. Two types of memory that actually reside

on the GPU chip are register and shared memory. Local,

Global, Constant, and Texture memory all reside off-chip.

Local, Constant, and Texture are all cached.

Shared Memory

Data stored in shared memory is visible to all

threads within that block and lasts for the duration of the

block. This is invaluable because this type of memory

allows for threads to communicate and share data between

one another. Each block has a Shared memory which is

shared by all its threads for communication within the block.

it is around 50 to 100 MB. The hardware which used for this

implementation has 49152 Bytes per block Shared Memory.

Register

This is fastest accessible memory present in the

GPU. Data stored in register memory is visible only to the

thread that wrote it and lasts only for the lifetime of that

thread. The hardware which used for this implementation

has 32768 per block registers.

Local Memory

Local memory performs slower. It has the same

scope rules as register memory.

Global Memory

Stored data in the global memory is visible to all

threads within the application (including the host), and lasts

for the duration of the host allocation.

Constant memory is used for data that will not

change over the course of a kernel execution and is read

only. Using constant rather than global memory can reduce

the required memory bandwidth, however, this performance

gain can only be realized when a warp of threads read the

same location.

Texture Memory

Texture memory is another variety of read-only

memory on the device. When all reads in a warp are

physically adjacent, using texture memory can reduce

memory traffic and increase performance compared to

global memory.

TIWARI ET. AL.: IMPROVE THE EXECUTION TIME BY USING GPU FOR COMPLEX APPLICATION WITH SIMD

Indian J.Sci.Res. 20(2): 227-232, 2018

Figure 1: Memory model of the NVIDIA device [Source

: NVIDIA web site]

Important Units of CUDA Architecture

A parallel computation used the abstraction of

threads, blocks, and grids organized by CUDA which are -

Thread

The basic unit of CUDA architecture is a thread.

Each thread runs on separate cores of multiprocessors and

each thread can have a pair of Register memory for fast

access. Threads are identified by threadIdx, which can be

1D, 2D or 3D. Indexes are used by every thread to access

elements in an array such that the collection of all thread

cooperatively processes the entire set of data.

Block

A block is a logical unit which contains

multidimensional thread. Block is the group of threads and

is identified by blockIdx. The GPU is a collection of

multiprocessors (MPs), [Bernabé et. al., 2013] [Soroushnia

et. al., 2014] where each multiprocessor responsible for

handles one or more blocks in a grid. A block is never

divided across multiple processorss.

Grid

It is a group of blocks. A complete Grid is handled

by a single GPU. There is no synchronization between the

blocks. A Grid is started in the synchronous form in the

CPU, but there can be multiple Grids running at the same

time.

PROBLEM IDENTIFICATION

The main resources of a computer system are

memory and processor. Memory and processor both plays

an important role in high-performance computing, when

large amount of data sets used as input. These data sets

requires large amount of memory. A single system is not

able to fulfill the memory requirements. So multiprocessor

or multicomputer systems are used. Multiprocessor system

uses the concepts of shared memory and multicomputer uses

the concepts of distributed memory (Non – shared).

When large amount of data sets used as input,

calculation was not done in proper way, it takes garbage

value. The main reason of the problem is cache storage

organization and defect caused by mapping of elements of

matrix on to single cache set instead of using the entire

cache set. Over all degrade the performances of machine

which increased execution time instead actual execution

time. This paper presents a matrix multiplication problem

on the GPU and CPU and comparing the execution time

with the use of NVIDIA GeForce GT 525M machine.

SPECIFICATION

The testing platform requirements are as follows:-

Hardware Specification

Intel (R) core (TM) i3-2350M CPU @ 2.30 GHz

System memory:- 4GB(installed memory)

Testing Platform Specifications

Operating System: - windows7 (32-bit operating system)

Software used: - Microsoft visual studio 2010

Language used: - CUDA C

Version of CUDA: - CUDA Toolkit 6.5

GPU Specification

The table shows capabilities of a GPU which we have

implemented and performing operation.

TIWARI ET. AL.: IMPROVE THE EXECUTION TIME BY USING GPU FOR COMPLEX APPLICATION WITH SIMD

Indian J.Sci.Res. 20(2): 227-232, 2018

Table 1: NVIDIA GPU specification

Device name NVIDIA GeForce GT

525 M

Compute capability 2.1

Amount of global memory 1024 MB

Number of µp 2 (48 CUDA Core)

Number of streaming

prospectors cores

96 CUDA core

Texture fill rate 9.6 billion/second

Memory clock rate 900 MHz

Constant memory amount 65536 bytes

Processor clock tester 1200 MHz

Interface memory DDR3

Interface width of memory 128 bits

Bandwidth of memory 28.8 GB/second

Shared memory amount per

block

49152 bytes

Registers available per block no. 32768

Size of wrap 32

No. of max. threads per µp 1536

No. of threads per block max. 1024

Dimension size of a thread

block<x,y,z> max.

1024, 1024, 64

Dimension size of a grid

size<x,y,z> max.

65535, 65535,

s65535

Texture alignment 512 bytes

Max memory pitch 2147483647 bytes

METHODOLOGY

In this paper the matrix of different size has been

stored in file and this file has been used as input. The

algorithm [Tiwari et. al., 2015] is as given below: -

Step 1. Input the file of matrix of different size to CPU

Step 2. The time recorder starts (ts)

Step 3. CPU sends matrix data to GPU

Step 4. GPU receives the data and operation

Step 5. GPU distributes these among threads with scatter

function.

Step 6. GPU performs their operations in parallel

Step 7. GPU collects the processed data with gather

function.

Step 8. GPU returns the processed data to CPU

Step 9. CPU collects the processed data and produce the

Result

Step 10. The time recorder stops (te)

The total elapsed time includes the computation

time(tcomp) as well as total communication time (tcomm)

which is calculated by :

Elapsed time = te - ts msec.

Here communication time is the time to spend in

communication of data and computation time is the time to

spend in calculation of data.

RESULTS

All the matrix multiplication operations are

performed on predefined parameters as present in Table 1

and got the results which are tabulated in Table 2 and,

Figure 2 shows the graphical view for the performance of

Matrix Multiplication operation executed for many time and

taken an average value for particular sets of all set of N*N

size matrices.

From Figure 2, observe that when matrix size is

small, the execution time for matrix multiplication problem

on the GPU is more than that of execution time taken by

CPU, but when we increase the size of the matrix, execution

time taken by CPU is more than the time taken by GPU. The

execution time of one or both parallel techniques is less than

other, known as a non-shared implementation technique,

and the other is known as shared memory tile

implementation technique. The reason for time variation

between CPU and GPU is data set transfer from CPU to

GPU and then the resulting data transfer from GPU to CPU

is considerable time as compared to the total execution time.

When a small set of data take as input values for

multiplication on GPU, the multiprocessor spends more

time in transfer data compare to the computation time,

meanwhile, the CPU can compute the result in less time for

the small data set.

Table 2: CPU and GPU Average Execution Time

S.

No.

Size of

matrix

CPU

Time

(ms)

Non-shared

memory

GPU Time

(ms)

Shared

memory

GPU Time

(ms)

1 4*4 0.0026 0.0088 0.0114

2 8*8 0.004 0.0104 0.016356

3 16*16 0.023 0.013702 0.0196492

4 32*32 0.1442 0.0264908 0.0318104

5 64*64 0.424 0.12144 0.155468

6 128*128 2.337 0.75162 1.1218

7 256*256 6.748 2.8682 3.1012

TIWARI ET. AL.: IMPROVE THE EXECUTION TIME BY USING GPU FOR COMPLEX APPLICATION WITH SIMD

Indian J.Sci.Res. 20(2): 227-232, 2018

Figure 2: Comparison of Average Execution Time

taken by CPU and GPU for N*N Matrix

S.

No.

Size of

matrix

Non-shared

memory GPU

Time / CPU

Time (Speedup)

(Speedup) =

Shared memory

GPU Time /

CPU Time

1 4*4 3.38 4.38

2 8*8 2.6 4.089

3 16*16 0.5957 0.8543

4 32*32 0.1837 0.2206

5 64*64 0.2864 0.3667

6 128*128 0.3216 0.48

7 256*256 0.425 0.4596

Figure 3: Comparison Chart

CONCLUSION

The performance is comparing between NVIDIA

GeForce GT525M and Intel core processor in terms of

execution time by using multiple techniques i.e. Simple

Matrix Multiplication on Intel core processor (CPU),

Non-shared memory Matrix Multiplication and Shared

memory Tile Matrix Multiplication on NVIDIA GeForce

GPU. Above results show the simulation for Matrix

Multiplication problem on both the environment and

obtained the results which are discussed and analyzed in the

previous section.

In figure 3 the result shows that when the size of

the matrix increases then the performance of non-shared

parallel matrix multiplication technique is better than the

shared memory matrix multiplication on GPU. The

computation time for shared memory technique is more than

the non-shared matrix multiplication for all data set in this

device. In general the shared memory program has less

elapsed time than the elapse time in non-shared program.

But using shared memory does not necessarily reduce the

processing time, and this much depends on the GPU

architecture. As when system compare the results of shared

and non-shared technique, our GPU device perform better

in non-shared memory than the shared memory technique.

REFERENCES

Djinevski L., Arsenovski S., Ristov S. and Gusev M., 2013.

“Performance Drawbacks for Matrix

Multiplication using Set Associative Cache in

GPU devices,” in MIPRO 2013, pp. 193-198.

Sooknanan D.J. and Joshi A., 2016. “GPU Computing

Using CUDA in the Deployment ofSmart Grids,”

in SAI Computing Conference 2016, IEEE, pp.

1260-1266.

Sartori J. and Kumar R., 2013. “Branch and Data Herding:

Reducing Control and Memory Divergence for

Error-Tolerant GPU Applications,” IEEE

Transactions on Multimedia, 15(2): 279-290.

Shah M. and Patel V., 2014. “An Efficient Sparse Matrix

Multiplication for the skewed matrix on GPU,” in

14th International Conference on

High-Performance Computing and

Communications, IEEE, pp. 1301-1306.

Cui X., Chen Y. and Mei H., 2009. “Improving

Performance of Matrix Multiplication and FFT on

GPU,” in 15
th

 International Conference on Parallel

and Distributed Systems 2009, IEEE, pp. 42-48.

Shah M., 2015. “Sparse Matrix Sparse Vector

Multiplication -A Novel Approach,” in 44th

International Conference on Parallel Processing

Workshops 2015, IEEE, pp. 67-73.

Ohshima S., Kise K., Katagiri T. and Yuba1 T., “Parallel

Processing of Matrix Multiplication in a CPU and

TIWARI ET. AL.: IMPROVE THE EXECUTION TIME BY USING GPU FOR COMPLEX APPLICATION WITH SIMD

Indian J.Sci.Res. 20(2): 227-232, 2018

GPU Heterogeneous Environment,” In 7
th

International Meeting on High Performance

Computing for Computational Science

(VECPAR’06).

Ha S.W. and Han T.D., 2013. “A Scalable Work-Efficient

and Depth-Optimal Parallel Scan for the GPGPU

Environment,” IEEE Transactions on Parallel and

Distributed Systems, 24(12): 2324-2333.

NVIDIA. https://developer.nvidia.com.

Lo S.H., Lee C.R., Kao Q.L., Chung I.H. and Chung Y.C.,

2013. “Improving GPU Memory Performance

with Artificial Barrier Synchronization,” IEEE

Transactions on Parallel and Distributed Systems.

Salim M., Akkirman A.O., Hidayetoglu M. and Gurel L.,

2015. “Comparative Benchmarking: Matrix

Multiplication on a Multicore Coprocessor and a

GPU,” in IEEE, pp. 38-39.

Anh N.Q., Fan R. and Wen Y., 2015. “Reducing Vector I/O

for Faster GPU Sparse Matrix-Vector

Multiplication,” in 29th International Parallel and

Distributed Processing Symposium, 2015, IEEE,

pp. 1043-1052.

Eberhardt R. and Hoemmen M., 2016. “Optimization of

Block Sparse Matrix-Vector Multiplication on

Shared-Memory Parallel Architectures,” in

International Parallel and Distributed Processing

Symposium Workshops 2016, IEEE, pp. 663-672.

Liu W. and Vinter B., 2014. “An Efficient GPU General

Sparse Matrix-Matrix Multiplication for Irregular

Data,” in 28
th

 International Parallel & Distributed

Processing Symposium 2014, IEEE, pp. 370-381.

Zha X. and Sahni S., 2013. “GPU-to-GPU and Host-to-Host

Multi pattern String Matching on a GPU,” IEEE

Transaction On Computers, 62(6): 1156-1169.

Barberis A., Danese G., Leporati F., Plaza A. and Torti E.,

2013. “Real-Time Implementation of the Vertex

Component Analysis Algorithm on GPUs,” IEEE

Geoscience and Remote Sensing Letters, 10(2):

251-255.

Bernabé S., Sánchez S., Plaza A., López S., Benediktsson

J.A. and Sarmiento R., 2013. “Hyper spectral

Unmixing on GPUs and Multi-Core Processors: A

Comparison,” IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing,

6(3): 1386-1398.

Soroushnia S., Daneshtalab M., Plosila J., Pahikkala T. and

Liljeberg P., 2014. “high performance pattern

matching on heterogeneous platform”, Journal of

Integrative Bioinformatics, 11(3):253.

Tiwari R., Sharma M. and Mehta K.K., 2015. “Dynamic

Load Balancing in Parallel Processing using MPI

Environment to Improve System Performance ”

International Journal of Advance Research in

Computer Science and Software Engineering,

5(6): 730 – 734.

