Available online at: http://www.ijsr.in

Online ISSN: 2250-0138

INDIAN JOURNAL OF SCIENTIFIC RESEARCH

DOI:10.32606/IJSR.V11.I2.00008

Received: 27-08-2020

Accepted: 03-12-2020

Publication: 31-01-2021

Indian J.Sci.Res. 11 (2): 47-51, 2021

Original Research Article

SYNTHESIS OF SOME N,N,O / N,N,S DONOR LIGANDS AND THEIR METAL COMPLEXES

ANJANI KUMAR SHUKLA^{a1} AND NIDHI SRIVASTAVA^b

^aP.G. Department of Chemistry, R.D.S. College, Muzaffarpur, Bihar, India ^bDepartment of Chemistry, B.R.A. Bihar University, Muzaffarpur, Bihar, India

ABSTRACT

The paper describes the synthesis of six ligands derived by the reaction of diazotized solution of aminothiazole and its methyl derivatives with acetoacetanilide, thiouracil and, 3-acetylamino-N, N-diethyaniline. These ligands were used to synthesise their copper (II) complexes which were characterised with the help of elemental analysis, magnetic moment, i r and uv-visible spectral analysis. A geometry and structure was also proposed for such complexes.

KEYWORDS: Complexes, Magnetic Moments, IR, UV-Visible Spectra

The compounds containing sulphur and nitrogen atoms have been found their uses in medicinal chemistry antitubourculous, Hypotics, local anaesthetics, as antispasmodies. The hypoglycemic activities have also been reported in some derivatives of the series of similar compounds (Prasad et al., 1992) (Srivastava, 1990). The incorporation of transition metal ions have been found to enhance such activities in several cases. With this view, the attempts were made to synthesise and characterise Cu (II) complexes with six ligands obtained by the reaction of acetoacetanilide (I) thiouracil (II) and 3-acetylamino-N,N- diethyl aniline (III) with diazotised solution of 2aminothiozole (IV) and its methyl derivatives (V). Their characterisation was done with the help of elemental analysis magnetic moment measurement, uv-visible spectral and IR spectral studies.

EXPERIMENTAL

2-aminothiozole (0.1 mole) and 4-methyl-2aminothiozole (0.1 mole) were dissolved in dil HCl (25 ml), cooled to $O^{0}C$ and saturated sodium nitrate was added dropwise in it,. The diazotised solution was treated with the aqueous ethanolic solution of acetoacetanilids (0.1 mole), thiouracil (0.1 mole) 3-acetylamino- N,Ndiethyl aniline solution separately. The precipitates were filtered out and crystallized by ethanol to obtain the crystalline ligands. The ligands were insoluble in water but soluble in organic solvents like chloroform, acetone, acetic acid etc.

The Cu (II) complexes of the above ligands were synthesized by refluxing methanolic solution of Copper (II) acetate dehydrate (0.1 mole) and the ligands (0.1 mole) for 4-5 hours and the pale brown precipitate obtained, were filtered out (Srivastava *et al.*, 2019) (Srivastava and Srivastava, 1994) (Srivastava *et al.*, 2014). The precipitates were repeatedly washed with aqueous methanol to remove the unreacted ligand. The complexes were insoluble in water and organic solvents.

RESULTS AND DISCUSSION

Characterisation of Ligands

The elemental analysis and other physical constants alonywith the major, ir and uv-vis spectral bands of ligands were tabulated and presented in the table 1 and 2.

Name of Ligands	Abbr.	Colour	Yiels	Perce	ntage	M.P °c
Name of Ligands	AUUI.	Coloui	(%)	Ν	S	WI.F C
1,2,3-trioxo-1-phenylamine-2-	$H_2(L_1)$	Yellow	75	19.30	11.04	145
(thiazolyhydrazono) butane	112(L1)	Tenow	15	(19.44)	(11.12)	145
1,2,3-trioxo-1-phenylamine-2-(4-	H ₂ (L ₂)	Yellow	76	18.56	10.52	149
methylthiazolydrazono) butane	112 (L2)	TCHOW	70	(18.61)	(10.61)	149
5-(2-thiazolylazo) thiouracil	$H_2(L_3)$	Radish Violet	75	29.00	13.10	128
5-(2-unazoryiazo) unouracii	112(L3)	Radisii violet	75	(29.04)	(13.27)	120
5-(4-methy) (2-thiazolylazo)thiouracil	H2(L4)	Radish Violet	78	27.41	25.06	132
3-(4-meury) (2-unazoryiazo) unouracii	112(L4)	Radisii violet	70	(27.48)	(25.10)	152
3-(acetylamino)-4-(2-thiazolylazo) N,N-	H(L5)	Deep Yellow	80	22.00	9.90	160
diethylaniline	11(L5)	Deep Tellow	80	(22.11)	(10.13)	100
3-(3-acetylamino)-4-(4-methyl-2-thiazolylazo)	H(L6)	Deep Yellow	75	22.00	9.96	165
N,N-diethylaniline	11(L6)	Deep Tellow	15	(22.11)	(10.13)	105

Table 1: Physical and Analytical Data of Ligands

Table 2: Characteristics I.R and UV spectral bands of Ligands

	R Spectral Bands (cm ⁻¹)						UV-Visible
Ligands	υ _{N-H}	$\boldsymbol{\upsilon}_{\text{C=O}}$	$\boldsymbol{\upsilon}_{\mathrm{C=N}}$	$\boldsymbol{\upsilon}_{\mathrm{CSC}}$	$\boldsymbol{\upsilon}_{N=N}$	$\boldsymbol{\upsilon}_{\mathrm{C=S}}$	Spectral Bands (nm)
$H_2(L_1)$	3175(b)	1630(s),1530(s)	1580(s)	873			204,1234,367
H2 (L2)	3170(b)	1635(s),1575(s)	1525(s)	870(m)			205,235,365
$H_2(L_3)$	3185(b),3164(b)	1630(s)	1580(s)	870	1540	1137	234,367
H2(L4)	3180(b),3160(b)	1635(s)	1580(s)	870(m)	1540(s)	1137(m)	235,365
H(L5)	3190(b)	1635(s)	1580(s)	875(m)	1580		234,367,523
H(L ₆)	3185(b)	1640(b)	1575(s)	870(m)	1585(s)		235,365,525

Thus it is observed that all the ligands display a characteristics band of medium intensity at around 3260 ± 20 cm⁻¹. This band is assigned to N-H stretching vibration which indicated that during coupling reaction, the nitrogen atom of amino group of thiazolyl ring retains hydrogen. The occurrence of two strong and sharp peak at 1630 cm⁻¹ and 1530 cm⁻¹ in ligands H₂ (L₁) and H₂ (L₂) clearly indicated the presence of two types of carbonyl groups in ligands. It was reasonable to conclude that one carbonyl group is hydrogen bonded while the other is free. However the occurrence of only one strong and

sharp peak at 1630 cm⁻¹ in ligands $H(L_3)$ to $H(L_6)$ indicated that there was only one free carbonyl group in these ligand. The presence of IR spectral band at about 1580 cm⁻¹ which was very strong and sharp clearly suggested that the all ligands were containg C=N group. The presence of medium to strong peak at around 850 cm⁻¹ was assigned to the C-S-C stretching frequency which further confirmed the presence of thiazolyl moiety in all the molecule.

The above discussions indicated that in ligands $H_2(L_1)$ and $H_2(L_2)$, the active methylene group undergoes

condensation with the diazo group while in the remaining group, the phenyl or thiouracil part has directly been condensed with the diazo group.

The uv-visible spectra band also supports the above observation i.e. band around 367 nm indicative of $\pi \rightarrow \pi^*$ transition arises due to N=N/N=C group in the molecule and band around 204 nm is assigned due to hydrazono group present in ligands H₂ (L₁) and H₂

(L₂).The strong band around 234 nm were assigned due to $n \rightarrow \pi^*$ transition of hydrazono group. The adsorption at 523 nm in ligands H(L₅) and H(L₆) may be -N(C₂H₅) ₂ group.

Characterisation of Complexes

The characterisatic physical constants of the complexes were tabulated and presented in table 3.

Complexes	Colour	Yield	M.P ^o c Magnetic	Elemental Analysis (%)			
Complexes	Colour	riela	M.P C	Moment (BM)	Cu	N	S
Cu (HL1) (AC) H2O	Pale Brown	60	240	1.98	17.06	15.17	8.52
Cu (IILI) (AC) 1120	rate brown	00	240	1.70	(17.23)	(15.19)	(8.68)
Cu (HL ₂) (AC) H ₂ O	Pale Brown	65	245	1.83	16.09	15.01	8.02
$Cu(\Pi L_2)(AC)\Pi_2O$	I ale brown	05	243	1.05	(17.01)	(15.5)	(8.4)
Cu L3 H2O	Pale Brown	50	182	1.75	19.7	21.25	9.95
Cu L3 1120	I ale brown	50	162	1.75	(19.81)	(21.84)	(9.98)
Cu L4 H2O	Pale Brown	51	188	1.75	18.17	20.75	8.85
Cu L4 H2O	rale blowli	51	100	1.75	(18.81)	(20.84)	(8.98)
Cu (L5) 2	Pale Brown	70	200	1.80	8.92	9.91	4.60
Cu (L5) 2	r ale brown	70	200	1.00	(9.19)	(10.06)	(4.68)
Cu (L6) 2	Pale Brown	70	205	1.72	8.52	9.61	4.40
Cu (L6) 2	I ale BIOWII	70	205	1.72	(9.00)	(1.96)	(4.28)

Table 3: Physical and analytical data of complexes

The elemental analysis conforms to the composition of complexes mentioned in the table.

The magnetic moment value of copper complexes were in the range 1.73-2.20 BM, which is

characteristic of octahedral or square plannar Cu (II) complexes.

I.R absorption bands of Cu (II) complexes with ligands H_2 (L₁) to $H(L_6)$ are given in table 4.

Table 4: Characteristics I.R spectral bands of Cu (II) complexes

	I.R Spectral Bands (cm ⁻¹)					
Complexes	$\upsilon_{_{ m H2O}}$	ບ _{C=0}	υ _{ac}	$\boldsymbol{\upsilon}_{\mathrm{N=N}}$	$\boldsymbol{\upsilon}_{\mathrm{CSC}}$	$\boldsymbol{v}_{\text{N=C}}$
Cu (HL1) (AC) H2O	3550-3440	1635-1580	1410		835	
Cu (HL ₂) (AC) H ₂ O	3555-3436	1680-1585		1440	832	
Cu L ₃ H ₂ O	3490-3460	1635-1585		1415	880	
Cu L ₄ H ₂ O	3500-3465	1630-1585	1415		832	
Cu (L5) 2		1580		1525	835	
Cu (L6) 2		1580		1520	835	

As evident from the table, the peak around 3200 cm⁻¹ in I R spectra (which was characteristic of NH group) was not present in complexes while they were present in all ligands. The absence of this peak in complexes clearly indicated about deprotonation of NH group in all ligands during complexation and involvement of the amino thiazolyl nitrogen in coordination. The absorption peak due to C-S-C cyclic group located around 850 cm⁻¹ in ligands remain almost unchanged. It indicated

that sulphur atom of the ligands was not involved in coordination in the Cu (II) complexes. A broad and strong peak in complexes 1630-1580 cm⁻¹ suggested about either the involvement of carbonyl group in coordination or presence of azo group in the ligand which remain unchanged. The occurrence of weak and medium peak around 3550-3480 cm⁻¹ are indicative of presence of water molecule in coordination sphere of Cu (II) ion and which was not observed in complexes with ligands H(L₅)

and H(L₆) indicating that the coordinated water molecules were absent in such complexes. The absorption peak around 1410±5 cm⁻¹ in complexes with ligands H₂ (L₁) and H₂ (L₂) indicated that free acetato group was also present in such complexes. The absence of peak around 1540 cm⁻¹ in these complexes, indicated that in complexes with ligands H₂ (L₁) and H₂ (L₂) the azo group was absent but the same was present in all other complexes. The band position of complexes have been presented in table 5. The tentative assignments of bands were made by assuming pseudooctahedral geometry for complexes with ligands H₂ (L₁), H₂ (L₂), H(L₅) and H((L₆) where as pseudoterahedral geometry for ligands H₂ (L₃) and H₂ (L₄).

Complexes	$^{2}B_{1}g \rightarrow ^{2}A_{1}g$	$^{2}B_{1}g \rightarrow ^{2}B_{1}g$	$^{2}B_{1}g \rightarrow ^{2}Eg$	$A_1\!\rightarrow T_2$	$B_1 \longrightarrow T_2$
$Cu (HL_1) (AC) H_2O$	790	650	440		
Cu (HL ₂) (AC) H ₂ O	795	655	435		
Cu L ₃ H ₂ O				790	590
Cu L ₄ H ₂ O				796	596
Cu (L5) 2	800	650	435		
Cu (L6) 2	790	655	435		

Table 5: Electronic spectral bands of copper (II) complexes in nm	Table 5: Electronic	spectral bands of	f copper (II)	complexes in nm
---	----------------------------	-------------------	---------------	-----------------

STRUCTURES

 $[Cu(HL_2)(Ac)H_2O]$

 $[Cu(L_3)H_2O]$

 $[Cu(L_4)H_2O]$

 $[Cu(L_6)_2]$

CONCLUSION

The structure of the synthesized coordination compounds were assigned on the basis of observations recorded above.

ACKNOWLEDGEMENT

The authors are thankful to H.O.D of the university Department of Chemistry Muzaffarpur for providing laboratory facility and valuable suggestions and also thankful to Dr. A K Srivastava (Retd.) H.O.D of the university Department of Chemistry Muzaffarpur, B R A Bihar University Muzaffarpur.

REFERENCES

- Prasad N., Sahay A. and Shrivastava A.K., 1992. "copper (II) complexex of aryl hydrazones". Asian J. Chem. Rev., **3**: 22-31.
- Srivastava A.K., 1990. Ph.D, Thesis B R A Bihar University Muzaffarpur.
- Srivastava A.K., Shukla A. and Srivastava N., 2019. "Synthesis and characterization of copper (ii) complexes of N, S donor ligands". J. Chemtracks, **21**: 1-4.
- Srivastava A.K. and Srivastava P.K., 1994. "studies on aryl hydrazones part-IX", Asian J. Chemistry, **6**: 901-910.
- Srivastava A.K., Kumari S. and Srivastava N., 2014. "studies on the copper (II) and cobalt (II) complexes with N,N' bis(2-benzothiazolyl) -2,6pyridinedithiocarboxamibe," Oriental J. Chemistry, **30**(4): 2065-68.