Indian J.Sci.Res. 17(2): 550 - 555, 2018

ISSN: 0976-2876 (Print)
ISSN: 2250-0138(Online)

COMPUTING SEEDS FOR LFSR-BASED TEST GENERATION FROM NONTEST CUBES

Vigneshwar Mohan
Department of Communication and Networking, Trichy Engineering College, Trichy

Abstract- In test data compression methods that are based on the use of a linear-feedback shift register, a seed that produces
a test for a target fault is computed based on a test cube for the fault. With a given LFSR, a seed may not exist for a given
test cube, even though a seed may exist for a different test cube that detects the same fault. This issue is addressed in this
brief by computing seeds for LFSR-based test generation without using test cubes. Instead, the procedure described in this
brief is based on the use of nontest cubes. A nontest cube for a fault must be avoided in any test or test cube for the fault in
order to allow the fault to be detected. Therefore, nontest cubes do not limit the ability of the procedure to compute seeds
with a given LFSR. Experimental results demonstrate the advantages that the use of nontest cubes provides, and the

associated computational cost.

Keywords—Linear-feedback shift register (LFSR)-based test generation, nontest cubes, scan circuits, test cubes, test data

compression.

I. Introduction

When test data compression is based on the use of a linear-
feedback shift register (LFSR), test cubes are used for
com- puting seeds for the LFSR [1]-[10]. Given a test
cube ci for a target fault fi, a seed si for the LFSR is
obtained by solving a set of linear equations that relate si
with the specified values of ci [1]. When si is loaded into
the LFSR, and the LFSR is clocked for the appropriate
number of clock cycles, the scan chains of the circuit are
filled with a test ti. The test ti contains all the specified
values of ci. Therefore, ti is guaranteed to detect fi.

When an LFSR is used with a given set of test cubes, a
seed may not exist for one or more of the test cubes [2],
[9]. However, even if a seed does not exist for a test cube
ci0 that detects a fault fi, it is possible that a seed exists for
a different test cube cil for fi.

To address this issue it is possible to compute different test
cubes to replace ones for which seeds do not exist.
Alternatively, a procedure developed earlier uses a test
cube ci for a fault fi only as guidance for the computation
of a seed si. The procedure allows the seed si to produce a
test ti that conflicts with ci as long as ti detects fi.
However, this procedure still relies on the use of specific
test cubes. Therefore, even with a partial match, it may not
be able to find a seed si for a fault fi based on a test cube
ci.

The procedure described in [11] adds to the circuit an
XOR network that models the constraints of the test data
decompression logic. By performing test generation for the
extended circuit, the procedure from [11] finds seeds for
an LFSR directly, without first computing test cubes.

The goal of this brief is to show that it is possible to
compute seeds for LFSR-based test generation without
using test cubes and without extending the circuit. This
alleviates the constraints that the use of test cubes places

'Corresponding Author

on the ability to detect target faults without the need to
perform test generation for a more complex circuit. Instead
of test cubes, the procedure described in this brief uses
what are called nontest cubes [12]. A nontest cube ui for a
fault fi prevents fi from being detected. In order to detect
the fault, it is necessary to prevent ui from appearing in a
test. This applies to every test and test cube for the fault.
Therefore, the use of nontest cubes for computing seeds
does not limit the ability of the procedure to find seeds
when they exist for a given LFSR.

The procedure for computing seeds based on nontest cubes
uses a low-complexity procedure that is based on logic
simulation of the LFSR to compute the test ti that a given
seed si produces. Fault simulation of the fault fi under ti is
used for determining whether ti detects fi. To compute a
seed si for a given target fault fi, the procedure uses a set
of nontest cubes Ui for fi. It starts from a random
assignment to si. It modifies si so as to avoid the
appearance of nontest cubes from Ui in ti. The
modification of si is expected to lead to the detection of fi
when a seed for fi exists.

The advantage of this procedure is that it is not constrained
by a given test cube. Therefore, a seed for a given LFSR
may be found even if one cannot be found based on a test
cube. Its disadvantage is that the search for a seed can be
more time-consuming, since it is guided only by values
that need to be avoided. To address this issue, it is possible
to use nontest cubes only for faults that cannot be detected
based on test cubes. Experimental results presented in this
brief demonstrate this point. Since only hard-to-detect
faults are targeted, test compaction with nontest cubes is
not considered.

Considering the computation of nontest cubes, a partial set
of nontest cubes for a fault fi can be obtained in a
preprocessing step. The set can be extended during the
computation of a seed si for fi.

COMPUTING SEEDS FOR LFSR-BASED TEST GENERATION FROM NONTEST CUBES

In particular, every test ti that the seed produces and
does not detect fi can be used for computing a nontest
cube for fi [12]. In this brief, only nontest cubes with
single specified values are used, and they are computed in
a preprocessing step. This is based on the exper- imental
observations that nontest cubes with single specified
values are the most effective in guiding the generation of a
seed. In addition, hard-to-detect faults in benchmark
circuits have such nontest cubes. Single stuck-at faults are
used as target faults. A single stuck-at fault where line gi is
stuck at the value ai is denoted by fi = gi /ai. The
procedure can be extended to other fault models. For
example, to consider transition faults, two-cycle nontest
cubes can be used. This brief is organized as follows.
Section II describes the computation of nontest cubes.
Section III describes the use of nontest cubes for the
computation of a seed for a target fault. Section IV
describes the generation of seeds for a given set of target
faults. Section V presents the experimental results.

II. Computation Of Non Test Cubes

A set of nontest cubes Ui for a target fault fi = gi /ai is
computed in a preprocessing step as described in this
section.

A nontest cube for fi prevents fi from being activated
and/or propagated to an output. Therefore, the nontest cube
must be avoided by every test and test cube for fi.

Table I
Test Cubes
g b | 274+b | ugjqp
0 0 0 0xxXX
0 1 1 [XXXX
1 0 2 x0xxx
1 1 3 x1xxx
2 4] 4 xx0xx
2 1 5 Xx1xx
3 0 6 xxx0x
3 1 7 xxx1x
4 0 8 xxxx0
4 1 9 xxxx1

Only nontest cubes with single specified values are
considered.

For a circuit whose combinational logic has n inputs
(primary inputs and present-state variables), the test cube
u2j+b,where 0 < j<nand b € {0, 1}, assigns the
value b to inputj , and undefined values to the remaining
inputs. The test cube u2 j +b is represented as u2 j +b (0)
u2 j+b (1) -~ u2 j +tb (n — 1), where u2 j +b (k) is the
value of input k under u2 j +b. We have thatu2 j +b (j) =b
and u2 j +b (k) = x fork=j. For illustration, the test cubes
with single specified values for a circuit with n =5 inputs
are shown in Table I. In general, for a circuit with n inputs,
the number of test cubes with single specified values is 2n.

Indian J.Sci.Res. 17(2): 550 - 555, 2018

The number of nontest cubes that will be obtained for a
fault is bounded by 2n.

The procedure described in this section determines the
set of nontest cubes Ui for a fault fi = gi/ai as follows.

The procedure traces the circuit forward from gi in order to
find all the outputs to which fi can potentially be
propagated. It then traces the circuit backward from these
outputs to find all the inputs that can potentially affect the
detection of fi. This set of inputs is referred to as the input
cone of fi, and it is denoted by J (fi).

For an input j €/ J (fi), assigning a value cannot prevent fi
from being detected. Therefore, u2 j and u2 j +1 are
excluded from Ui without further computations. The
procedure evaluates the test cube u2 j +b for every j €1J
(fi)and b € {0, 1}, as follows.

To evaluate u2 j +b, the procedure first initializes all the
circuit lines to unspecified values. It then implies the value
b on input j. This yields the values in the fault-free circuit
under the test cube u2 j +b. If the fault-free value of line gi
is equal to ai, the test cube u2 j +b prevent fi from being
activated. The procedure adds u2 j +b to Ui as a nontest
cube for fi, and it does not consider u2 j +b further.
Otherwise, the procedure computes the values obtained
under u2 j +b in the faulty circuit by implying the value ai
on line gi. The fault fi can potentially be activated and
propagated to an output if it is possible to find a path from
gi to an output such that all the lines along the path carry
fault-free/faulty values from the set {0/1, 0/x , 1/0, 1/x , x
/0,x/1,x/x }.

Such a path is referred to as a propagation path. A
propagation path can be found in time that is linear in the
number of circuit lines.If no propagation path exists for
fi , the test cube u2 j +b prevents fi from being
detected. In this case, the procedure adds u2 j +b to Ui as a
nontest cube for fi.

To compute Ui, the procedure considers at most 2n test
cubes. For every test cube that it considers, it performs
logic simulation of the fault-free circuit. In addition, it may
perform logic simulation of the faulty circuit, and a
traversal of the circuit to find a propagation path. For a
circuit with G lines, this requires O (n - G) operations.

II1. Computation Of A Seed Based On A Set Of Non
Test Cubes

Let Ui be a set of nontest cubes for a fault fi. The
procedure described in this section uses Ui as it attempts to
compute a seed si such that the test ti it produces detects fi.

The procedure initializes si randomly, and computes the
test ti that si produces. A nontest cube u2 j +b € Ui

COMPUTING SEEDS FOR LFSR-BASED TEST GENERATION FROM NONTEST CUBES

indicates that a test ti for fi must have ti (j) = b, where ti (j)
is the value of input j under ti. The test ti that si produces is
said to avoid a nontest cube u2 j +b € Ui if ti (j) = b. The
number of nontest cubes from Ui that ti avoids is denoted
by na.

If na < |Ui |, at least one of the nontest cubes in Ui prevents
ti from detecting fi. If na = |Ui |, ti avoids all the nontest
cubes in Ui, and ti may detect fi. Detection is not
guaranteed, since the fault may have other nontest cubes
that are not included in Ui . To check whether ti detects fi,
the procedure simulates fi under ti. If the fault is detected,
the procedure returns si as the required seed. This may
occur accidentally for the initial random seed. Otherwise,
the procedure modifies si by complementing its bits one at
a time in an attempt to detect the fault. The modification is
guided by Ui as follows.

Using the random initialization of si, the procedure
assigns na,best = na . The procedure considers the bits of
si one at a time in a random order. When bit k is
considered, the procedure complements the bit by
assigning si (k) = si (k).

It then computes ti and na. If na > na, best, the procedure
accepts the complementation of bit k, and assigns na, best
= na. Otherwise (na < na, best), it complements si (k) again
in order to undo the complementation.

If bit k is complemented and na = |Ui|, the
procedure simulates fi under ti. If the fault is detected, the
procedure returns si as the required seed.

The procedure considers all the bits of si repeatedly
NMOD times, where NMOD is a parameter of the
procedure. As na, best is increased, the procedure avoids
more of the nontest cubes of fi. After na, best reaches |Ui |,
ti may detect fi. As long as ti does not detect fi, the
procedure continues to modify si while ensuring that na =
[Ui | for every bit that it accepts to complement. This
increases the likelihood that fi will be detected.

This process is different from a random search in that it
avoids the nontest cubes from Ui, thus increasing the
likelihood of detecting fi. As shown in [12], avoiding
nontest cubes is sufficient for detecting hard-to-detect
faults in benchmark circuits. The procedure for generating
a seed si for a fault fi is provided in Procedure 1.

The worst case computational complexity of Procedure 1
is deter-mined by its fault simulation effort in the case
where it does not find a seed. In this case, it attempts to
complement every bit of the seed NMOD times. For an
LFSR with B bits, the number of attempts that the
procedure makes is NMOD - B. For every attempt, it
computes the test ti, and simulates fi under ti if na = |Ui |.
Thus, in the worstcase, the procedure simulates fi under
NMOD - B tests.

Indian J.Sci.Res. 17(2): 550 - 555, 2018

Procedure 1 Generating a Seed 5; for a Fault £

17 Imitialize #; randomly,
2) Find the test {; that & produces,

3) Compute ri, and assign mg pest = M.

4 If n, — |5, simulate f; under ¢, 1f the fault is detected,
Telnm &,

5) For ftapod = 0, 1, cocy Nywoop — 1

a) For every bil sq(F) of #:
i) Complement s, (k).
i) Find the test f; that s produces.

i) Compute mg. If g = ng pests .;,hhiajll M bent — Riks
Else, complement =;{k) agzain.
vy If ng — [U%]. simulate fi under #:. If the fault is

detected, return s,

6) Return an indication that the fanlt is not detected,

IV. Computation of Seeds for a Set of Target Faults

Given a set of detectable target faults F, the procedure
described in this section is applied to compute a set of
seeds for F. The set of seeds_is denoted by SNTC (for
nontest cubes)

The procedure considers the faults from F one at a time
iteratively. Because of the random decisions made by
Procedure 1, including the random selection of an initial
seed, and because nontest cubes do not provide complete
information about the values that are needed for detecting
a fault, it is possible that a fault will be detected only after
several iterations.

In iteration I > 1, the procedure considers every fault fi €
F. For fi, it computes the set of nontest cubes Ui. It then
calls procedure 1 to compute a seed. If a seed si is found,
the proce-

dure computes the test ti that the seed produces. It
performs fault simulation with fault dropping of F under ti.
It then adds si to SNTC.

The procedure terminates if all the faults in F are
detected.In addition, the procedure has a termination
condition based on its run time. This is given by the
parameter RT.

The procedure is summarized as procedure 2.The set of
nontest cubes Ui for a fault fi is recomputed every time the
procedure considers fi .Alternatively, the set can be
computed once and stored for future use if fi is not
detected.

Although the run time of Procedure 2 is bounded by RT, it
is interesting to consider the worst case computational
complexity of an iteration of the procedure. This is
determined by its fault simulation effort in the case where
it does not detect any fault. In this case, the procedure calls
Procedure 1 with every fault from F, for a total of |F | calls.
Procedure 1 simulates a fault under at most NMOD - B

COMPUTING SEEDS FOR LFSR-BASED TEST GENERATION FROM NONTEST CUBES

tests. Overall, in an iteration, Procedure 2 simulates a fault
under at most NMOD - B - |F | tests.

Procedure 2 Generating a Set of Seeds Sy7r

17 Assign Sype =4,
2y Forf=1,2,..,as lmgas F £
a) For every fault fy € F!
1 Compute the set of nontest cubes L.
i) Call Procedure 1 1o generate a seed. If o seed & iy
wenerated:
A) Find the test #; that 2, produces. Perform fault
simulation with fault dropping of & under f,.
By Add & w Svre.
iy If the run time reached BT, go 1o Swep 3.

V. Experimental Results

The main advantage of Procedure 2 is that it is not
restricted by a given set of test cubes. The goal of the
experiment described in this section is to show that this
flexibility allows it to detect faults that are not detected by
a procedure that uses test cubes. To achieve this goal,
Procedure 2 is applied to the hard-to-detect faults that
remain undetected by a procedure that is guided by test
cubes. The experiment proceeds as follows.

A procedure that was developed earlier, and is guided by
test cubes, allows partial matches between the tests that the
LFSR produces and the test cubes, as long as the tests
detect target faults. Thus, the procedure is more flexible
than a procedure that solves linear equations in order to
find seeds for given test cubes. In an experiment whose
goal was to study the effectiveness of this procedure, all
the flip-flops of the circuit were included in a single scan
chain, and a primitive LFSR from [13] was used for
driving the scan chain directly. A binary search process
yielded the LFSR with the smallest number of bits for
which the procedure achieves the highest fault coverage.
Let the number of bits in this LFSR be B0, and let the set
of seeds be STC (BO).

In this brief, primitive B -bit LFSRs from [13] are
considered for B = B0/2, B0/2 + 1,.., BO — 1. Only one
LFSR is given in [13] for every value of B, and this LFSR
is used without any selection. For every value of B, the
procedure based on test cubes is used for generating a set
of seeds that is denoted by STC (B). With B < B0, there
are cases where STC (B) does not detect all the detectable
single stuck-at faults. Considering only the faults that
remain undetected, Procedure 2 is used for generating a set
of seeds that is denoted by SNTC (B).

Procedure 2 is applied with the following parameter
values. The number of times Procedure 1 considers the bits
of a seed for complementation, NMOD, is determined as

Indian J.Sci.Res. 17(2): 550 - 555, 2018

follows. For I < 100, where I is the iteration of Procedure
2, NMOD = 1. For I > 100, NMOD = 100. Thus, the
procedure considers all the bits of a seed once in iteration
1, twice in iteration 2, and so on. Beyond iteration 100 (if
it is reached), the procedure considers all the bits of a seed
100 times.

The run time limit RT is defined with respect to the
normalized run time of Procedure 2. For normalization, the
run time is divided by the run time for single stuck-at fault
simulation of the tests produced by STC (BO).
Normalization provides an indication of the computational
effort of Procedure 2, which is based on fault simulation.
The value of RT is such that the normalized run time is
limited to 1000.

Table I

Benchmark Circuits

circuit | |
51423
55378
sH234
s13207
515850
35932
s38417
538584
b

b07

hl4

hl13

h20)

aes Core
des area

iZe

pei spoei ¢l
SsC

simple spi
spi
syslemcaes
systemedes
vl

ush phy

wh dma

The procedure based on test cubes was run with the same
limit on its run time to compute STC (B), for B = B0/2,
B0/2+1, ., BO —1. A lower run time limit was used in the
earlier study for computing B0 and STC (BO0).

A high limit on the run time was selected in order to allow
everyone of the procedures a sufficient number of
iterations for every fault. With this limit, the procedure
based on test cubes is not likely to find additional seeds
even if it is given a higher run time. The results are shown
in Tables II-1V. Table II shows all the benchmark circuits
that are considered for this experiment. For every circuit, it
shows the results of the procedure that is based on test
cubes when it uses the BO-bit LFSR. Column in p shows
the number of inputs to the combinational logic of the
circuit. Column B shows the number of LFSR bits (the

COMPUTING SEEDS FOR LFSR-BASED TEST GENERATION FROM NONTEST CUBES

value of B0). Column f.c. shows the single stuck-at fault
coverage that the procedure achieves. Column seed s
shows the number of seeds that the procedure produces.

For most of the circuits in Table II, the procedure based
on test cubes achieves the highest possible single stuck-at
fault coverage by detecting all the detectable faults. The
fault coverage varies with the LFSR when test cubes as
well as nontest cubes are used. Tables III and IV report on
cases with B=DB0/2, B0/2 + 1, ..., BO — 1, where the use of
nontest cubes improves the fault coverage compared with
the use of test cubes. As B is increased, Tables III and IV
report on caseswhere the fault coverage of STC (B) U
SNTC (B) increases as well. The only exception is s1423,
where all the values of B are reported.

For every circuit in Tables III and IV, column in p shows
the number of inputs. Column B shows the number of
LFSR bits, B. Column test cubes shows the results of the
procedure that is guided by test cubes. The corresponding
set of seeds is STC (B).Column nont est cubes shows the
results of Procedure 2. The set of seeds considered in this
case is STC (B) USNTC (B).

For both procedures, subcolumn f.c. shows the single
stuck-at fault coverage. Subcolumn seeds shows the
number of seeds. Subcolumn nt i me shows the normalized
run time of the procedure. In addition, for Procedure 2,
subcolumn U shows the average number of nontest cubes
in a set Ui based on which a seed was computed. For
ISCAS-89 benchmarks in Table III, subcolumn left shows
the percentage of detectable faults that are left undetected
by Procedure 2. For comparison, subcolumn rand shows
the percentage of detected faults that are left undetected
when 16K random tests are simulated

Table IIT
Fault Coverage Improvement With Non-Test Cubes

Lt ob Lt ob
I B f d tm f d tm [| fi d
Bl B 9a72 57 T001.71
61 10 9686 59 100171
o1 1 usIs 60 100171
41 12 98IS 61 100171 98,28 60 100200 900 080 020
a1 13 9875 65
ol 4 w0 64
ol 15 983s 61
sl 16 9BS4 63
91 1746 65 99.08 63 108.57 100 000 020
IR BN = OR.T8 13100239 700 095 06l
214 32 90w 242 99.13 243 11837 1100 000 0.6l
4T 31 v2m 9324 335 100201 993 023 9.02
247 a0 927s 345 93.36 354100209 741 001 v.02
247 46 wass 3 9347 341 ORU.6Y 740 000 w2
700 23 9694 400 9773 442 100227 1028 0.3 478
700 24 9737 403 9822 449 100229 971 024 475
32 700 3 970 394 9839 459 100219 9Y3 007 475
SI3850 611 23 w4ss ase $579 389 100184 1272 089 500
SIS8S0 611 29 wase asw 9592 394 100224 1345 076 500
611 31 9sm 375 96.21 385 100191 1094 047 500
611 33 0636 403 9655 409 100236 1878 0.3 500
611 43 wsss o 96,61 427 100188 1500 007 500
611 49 96.665 412 96674 412 92318 1000 0006 500
T [S53e0 s 00200 |
[|
Table IV

Fault Coverage Improvement With Non-Test Cubes

(ITC-99 and TWLS-05)

Indian J.Sci.Res. 17(2): 550 - 555, 2018

b b
wircuil imp i f d in i il m 1
[T8 4 wLIR 47 100200 [Z) 48 00550 600
[t 17 WS 48 Ik W 4 00300 400
WM T8 i) W63 50 100200 TR 52 1002 00 400
W7 53 0 0.0 45 100250 [Z]] L) 100300 00
7 53 n 6.5 52 100200 AT b 100250 200
hl4 =0 2] .73 252 BT8R 153 [[FTRET 525
bl4 130 (] .51 276 /%11 Th 1001 85 100
b4 67 G053 244 0S8 57 100231 600
hl4 TE0 75 L3 208 100234 T2 273 100241 378
b4 X0 ™ [0 003,35 Wl iy 1002 40 T.00
hl4 20 RT W RE] [[FITRTE ER LY 33 100204 T
b4 20 L W.TH k2 | B0 %2 G477 a4l 100245 T.
his 30 e LR 360 100254 G406 gl 1002465 700
hld W 118 T I 11 T b G500 358 100421 T00
[TE] EEERT] TS EIFL] LIAE! AL [T | R F]
bl 483 5 Y837 2 100216 Y830 513 1n02.03 00
bl 483 il GE.47 a7 1002.12 S0 57 1001 85 40
bls 483 6 URAe Al 49438 GRET W 00321 100
b5 483 ™ 857 18 46268 8 SR 518 68571 200
T b . RIT T TOOTIT s pi: £ T30 397
20 m 60 Q.71 w9 100073 077 382 1001.72 1350
L= 1) s a3 LN k] 1000 ©5 5122 3 1001 95 fll
[ri1] = T 9. w03 BO0C.5r G182 08 100434 650
hZ0 527 ™ Y247 427 100415 Y2 54 430 1N 22 343
s oo 58 LK} ST EIC) TOBTGT L 313 7T B0
s o T4 I8 0,508 74 100422 4,600 575 1002 35 700
[[o T W0 W TO00.G0 | W3 il WERiAT 21
Pt spoet il k] 3 L 13X TOOLTY B3T3 157 T Ta T35
L.t 40 o819 m D03 40 83| 171 L EPELY 100
T4 19 LN K} TORETT oral al TETT RO
146] .52 &7 i1l Tl A8 100844 16.50
146 M w50 4s 100022 A G 5 0015 W00
146 n LA [4 101033 A0 L] 1010.22 10.27
146 0 0 9 i 101000 10000 r 3
[37 W [e LIE TORT 7T T 77
L s TOT T | WA 11
[=T B [
= T 2 B T
L F 56 A3 L4 A 35 il
oo £ s T e T
wh Jma TR » .37 198 L Lty 2
wh dma T3 w51 192 27511 13
wh Jdma KR .50 13 A G7 26
wh Jma 738 n 059 i (] A S 18
wh Jdma 138 k] L 210 [LLHTE] 1

The information for Procedure 2 is omitted in the case of
s1423 if the use of nontest cubes does not increase the fault
coverage.

The following points can be seen from Tables III and IV.
There are cases where the use of nontest cubes increases
the fault coverage compared with the use of test cubes
alone. The existence of such cases is significant given that
the procedure based on test cubes already allows partial
matches between the tests that the LFSR produces and the
test cubes. Thus, it is not as constrained by the given test
cubes as a procedure that solves linear equations for
finding seeds. Even with this flexibility, the use of nontest
cubes increases the fault coverage in a significant number
of cases.

Procedure 2 finds nontrivial numbers of nontest cubes for
target faults. These nontest cubes are effective in guiding
the generation of seeds.

The number of seeds may be lower after nontest
cubes are generated because Procedure 2 applies forward-
looking reverse order fault simulation to remove seeds that
become unnecessary. For this experiment, forward-looking
reverse order fault simulation is applied to STC (B) U
SNTC (B).

Detailed consideration of the normalized run times
indicates that the procedures typically reach the final fault
coverage with a normalized run time that is significantly
lower than 1000. Thus, they can be run with a lower run
time limit. This can also be seen in Tables III and IV, for
example, from the case of s1423 with B = 17, where
Procedure 2 terminates after detecting all the detectable

COMPUTING SEEDS FOR LFSR-BASED TEST GENERATION FROM NONTEST CUBES

faults. It is also interesting to note that seeds are computed
for faults that are not detected by random tests.

Table V
Using Non-Test Cubes Alone.

(] montest cubes vnly
f d tm f il 1 [l
WIT M3 s w3 M Wway 738
YT MR 4T T 1 IR TR
YR A6 454 RRRS edh 45 Ham [k}
U6AS 418 3RS GRAS 420 25253 107N
wd? 412 5idd 47 B2 GMIST ARl
5 Ol 10000 571 W0 10 57 5.2 fil
s anea 000 162 M 10000 158 100,62 308
spi Wyl 475 T Wes 48 B AR
SYSleMCacs 100,00 182 1467 10,00 182 H1.48 443
wi WA M w36 66T 1367¥3 B4
wh dma 0000 12 4547 10000 Aw 0343 gn

Finally, Table V demonstrates that it is possible to use
Procedure 2 for all the target faults, without first using test
cubes to compute seeds. For Table V, the procedure based
on test cubes and Procedure 2 are applied independently to
all the target faults using the BO bit LFSR.

Table V demonstrates that Procedure 2 can compute a
complete set of seeds. Its run time is higher as discussed
earlier, supporting its use only for hard-to-detect faults.

VI. Conclusion

This brief described a procedure for computing
seeds for LFSR-based test generation without using test
cubes. Instead, the procedure uses nontest cubes. This was
motivated by the fact that a seed may not exist for a given
test cube even though a seed may exist for a different test
cube that detects the same fault. Thus, the use of test cubes
limits the flexibility of a procedure to compute seeds for
target faults. A nontest cube for a fault must be avoided in
every test for the fault in order to allow the fault to be
detected. Therefore, a nontest cube does not limit the
ability of the procedure to compute seeds with a given
LFSR. The cost of using nontest cubes is an increased
computational effort for computing a seed. Experimental
results demonstrated that, in spite of this cost, the
procedure can compute seeds for some faults that cannot
be detected by a procedure that uses test cubes.

References

[1] B. Koenemann, “LFSR-coded test patterns for scan
designs,” in Proc.Eur. Test Conf., 1991, pp. 237-
242.

[2] S.Hellebrand,S.Tarnick,J.Rajski, and B.
Courtois,“Generation of vector patterns through
reseeding of multiple-polynomial linear feedback
shift registers,” in Proc. Int. Test Conf., 1992, pp.
120-129.

[3] C. Barnhart, V. Brunkhorst, F. Distler, O.
Farnsworth, B. Keller, and B. Koenemann,

Indian J.Sci.Res. 17(2): 550 - 555, 2018

(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

“OPMISR: The foundation for compressed ATPG
vec- tors,” in Proc. Int. Test Conf., Oct. 2001, pp.
748-757.

J. Rajski et al.,, “Embedded deterministic test for
low cost manufacturing test” in Proc. Int. Test
Conf., 2002, pp. 301-310.

N. A. Touba, “Survey of test vector compression
techniques,” IEEE Des.Test Comput., vol. 23, no. 4,
pp- 294-303, Apr. 2006.

S. Alampally, R. T. Venkatesh, P.
Shanmugasundaram, R. A. Parekhji, and V. D.
Agrawal, “An efficient test data reduction technique
through dynamic pattern mixing across multiple
fault models,” in Proc. IEEE 29th VLSI Test
Symp., May 2011, pp. 285-290.

D. Czysz, G. Mrugalski, N. Mukherjee, J. Rajski, P.
Szczerbicki, and J. Tyszer, “Deterministic
clustering of incompatible test cubes for higher
power-aware EDT compression,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol.
30, no. 8, pp. 1225-1238, Aug. 2011.A.

Chandra, J. Saikia, and R. Kapur, “Breaking the
test application time barriers in compression:
Adaptive scan-cyclical (AS-C),” in Proc. Asian Test
Symp., Nov. 2011, pp. 432-437.

O. Acevedo and D. Kagaris, “Using the
Berlekamp—Massey algorithm to obtain LFSR
characteristic polynomials for TPG,” in Proc. Int.
Symp. Defect Fault Tolerance VLSI Nanotechnol.
Syst., Oct. 2012, pp. 233-238.

X. Lin and J. Rajski, “On utilizing test cube
properties to reduce test data volume further,” in
Proc. IEEE 21st Asian Test Symp., Nov. 2012, pp.
83-88.

T. Moriyasu and S. Ohtake, “A method of one-pass
seed generation for LFSR-based
deterministic/pseudo-random testing of static
faults,” in Proc. Latin-Amer. Test Symp., Mar.
2015, pp. 1-6.

Pomeranz, ‘“Non-test cubes for test generation
targeting hard-to-detect faults,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol.
32, no. 12, pp. 1957-1965, Dec. 2013.

P. H. Bardell, W. H. McAnney, and J. Savir, Built
in Test for VLSI: Pseudorandom Techniques. New
York, NY, USA: Wiley.

