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Abstract- In test data compression methods that are based on the use of a linear-feedback shift register, a seed that produces 

a test for a target fault is computed based on a test cube for the fault. With a given LFSR, a seed may not exist for a given 

test cube, even though a seed may exist for a different test cube that detects the same fault. This issue is addressed in this 

brief by computing seeds for LFSR-based test generation without using test cubes. Instead, the procedure described in this 

brief is based on the use of nontest cubes. A nontest cube for a fault must be avoided in any test or test cube for the fault in 

order to allow the fault to be detected. Therefore, nontest cubes do not limit the ability of the procedure to compute seeds 

with a given LFSR. Experimental results demonstrate the advantages that the use of nontest cubes provides, and the 

associated computational cost. 
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I. Introduction 

When test data compression is based on the use of a linear-

feedback shift register (LFSR), test cubes are used for 

com- puting seeds for the LFSR [1]–[10]. Given a test 

cube ci for a target fault fi, a seed si for the LFSR is 

obtained by solving a set of linear equations that relate si 

with the specified values of ci [1]. When si is loaded into 

the LFSR, and the LFSR is clocked for the appropriate 

number of clock cycles, the scan chains of the circuit are 

filled with a test ti. The test ti contains all the specified 

values of ci. Therefore, ti is guaranteed to detect fi. 

When an LFSR is used with a given set of test cubes, a 

seed may not exist for one or more of the test cubes [2], 

[9]. However, even if a seed does not exist for a test cube 

ci0 that detects a fault fi, it is possible that a seed exists for 

a different test cube ci1 for fi. 

To address this issue it is possible to compute different test 

cubes to replace ones for which seeds do not exist. 

Alternatively, a procedure developed earlier uses a test 

cube ci for a fault fi only as guidance for the computation 

of a seed si. The procedure allows the seed si to produce a 

test ti that conflicts with ci as long as ti detects fi. 

However, this procedure still relies on the use of specific 

test cubes. Therefore, even with a partial match, it may not 

be able to find a seed si for a fault fi based on a test cube 

ci. 

The procedure described in [11] adds to the circuit an 

XOR network that models the constraints of the test data 

decompression logic. By performing test generation for the 

extended circuit, the procedure from [11] finds seeds for 

an LFSR directly, without first computing test cubes.  

The goal of this brief is to show that it is possible to 

compute seeds for LFSR-based test generation without 

using test cubes and without extending the circuit. This 

alleviates the constraints that the use of test cubes places 

on the ability to detect target faults without the need to 

perform test generation for a more complex circuit. Instead 

of test cubes, the procedure described in this brief uses 

what are called nontest cubes [12]. A nontest cube ui for a 

fault fi prevents fi from being detected.  In order to detect 

the fault, it is necessary to prevent ui from appearing in a 

test. This applies to every test and test cube for the fault. 

Therefore, the use of nontest cubes for computing seeds 

does not limit the ability of the procedure to find seeds 

when they exist for a given LFSR. 

The procedure for computing seeds based on nontest cubes 

uses a low-complexity procedure that is based on logic 

simulation of the LFSR to compute the test ti that a given 

seed si produces. Fault simulation of the fault fi under ti is 

used for determining whether ti detects fi. To compute a 

seed si for a given target fault fi, the procedure uses a set 

of nontest cubes Ui for fi. It starts from a random 

assignment to si. It modifies si so as to avoid the 

appearance of nontest cubes from Ui in ti. The 

modification of si is expected to lead to the detection of fi 

when a seed for fi exists. 

The advantage of this procedure is that it is not constrained 

by a given test cube. Therefore, a seed for a given LFSR 

may be found even if one cannot be found based on a test 

cube. Its disadvantage is that the search for a seed can be 

more time-consuming, since it is guided only by values 

that need to be avoided. To address this issue, it is possible 

to use nontest cubes only for faults that cannot be detected 

based on test cubes. Experimental results presented in this 

brief demonstrate this point. Since only hard-to-detect 

faults are targeted, test compaction with nontest cubes is 

not considered. 

Considering the computation of nontest cubes, a partial set 

of nontest cubes for a fault fi can be obtained in a 

preprocessing step. The set can be extended during the 

computation of a seed si for fi. 
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In  particular,  every  test  ti   that  the  seed  produces  and  

does  not detect fi can be used for computing a nontest 

cube for fi [12]. In this brief, only nontest cubes with 

single specified values are used, and they are computed in 

a preprocessing step. This is based on the exper

observations that nontest cubes with si

values are the most effective in guiding the generation of a 

seed. In addition, hard-to-detect faults in benchmark 

circuits have such nontest cubes. Single stuck

used as target faults. A single stuck-at fault where line gi is 

stuck at the value ai is denoted by fi = gi /ai. The 

procedure can be extended to other fault models. For 

example, to consider transition faults, two

cubes can be used. This brief is organized as follows. 

Section II describes the computation of nontest cubes. 

Section III describes the use of nontest cubes for the 

computation of a seed for a target fault. Section IV 

describes the generation of seeds for a given set of target 

faults. Section V presents the experimental results.

II. Computation Of Non Test Cubes

A set of nontest cubes Ui for a target fault fi = gi /ai is 

computed in a preprocessing step as described in this 

section. 

A nontest cube for fi prevents fi from being activated 

and/or propagated to an output. Therefore, the nontest cube 

must be avoided by every test and test cube for fi.

Table I 

Test Cubes 

Only nontest cubes with single specified values are    

considered. 

For a circuit whose combinational logic has n inputs 

(primary inputs and present-state variables), the test cube 

u2 j +b , where 0 ≤  j < n and  b  ∈ {0, 1},  assigns  the  

value  b  to inputj , and undefined values to the remaining 

inputs. The test cube u2 j +b is represented as u2 j +b (0) 

u2 j +b (1) ··· u2 j +b (n − 1), where u2 j +b (k) is the 

value of input k under u2 j +b. We have that u2 j +b (j) = b 

and u2 j +b (k) = x fork=j. For illustration, the test cubes 

with single specified values for a circuit with n = 5 inputs 

are shown in Table I. In general, for a circuit with n inputs, 

the number of test cubes with single specified values is 2n. 
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value of input k under u2 j +b. We have that u2 j +b (j) = b 

and u2 j +b (k) = x fork=j. For illustration, the test cubes 

uit with n = 5 inputs 

are shown in Table I. In general, for a circuit with n inputs, 

the number of test cubes with single specified values is 2n. 

The number of nontest cubes that will be obtained for a 

fault is bounded by 2n. 

The  procedure  described  in  this  section  determines  the  

set  of nontest cubes Ui  for a fault  fi = gi /ai  as follows.

The procedure traces the circuit forward from gi in order to 

find all the outputs to which fi can potentially be 

propagated. It then traces the circuit backwar

outputs to find all the inputs that can potentially affect the 

detection of fi. This set of inputs is referred to as the input 

cone of fi, and it is denoted by J (fi). 

For an input j ∈/ J (fi), assigning a value cannot prevent fi 

from being detected. Therefore, u2 j and u2 j +1 are 

excluded from Ui without further computations. The 

procedure evaluates the test cube u2 j +b for every j 

(fi) and b ∈ {0, 1}, as follows.  

To evaluate u2 j +b, the procedure first initializes all the 

circuit lines to unspecified values. It then implies the value 

b on input j. This yields the values in the fault

under the test cube u2 j +b. If the fault

is equal to ai, the test cube u2 j +b prevent fi from being 

activated. The procedure adds u2 j +b to Ui as a nontest 

cube for fi, and it does not consider u2 j +b further. 

Otherwise, the procedure computes the values obtained 

under u2 j +b in the faulty circuit by implying the value ai 

on line gi. The fault fi   can potentially be 

propagated to an output if it is possible to find a path from 

gi to an output such that all the lines along the path carry 

fault-free/faulty values from the set {0/1, 0/x , 1/0, 1/x , x 

/0, x /1, x /x }. 

Such a path is referred to as a propag

propagation path can be found in time that is linear in the 

number of circuit lines.If  no  propagation  path  exists  for   

fi ,  the  test  cube  u2 j +b prevents  fi  from being 

detected. In this case, the procedure adds u2 j +b to Ui as a

nontest cube for fi. 

To compute Ui, the procedure considers at most 2n test 

cubes. For every test cube that it considers, it performs 

logic simulation of the fault-free circuit. In addition, it may 

perform logic simulation of the faulty circuit, and a 

traversal of the circuit to find a propagation path. For a 

circuit with G lines, this requires O (n · G) operations.
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indicates that a test ti for fi must have ti (j) = b, where ti (j) 

is the value of input j under ti. The test ti that si produces is 

said to avoid a nontest cube u2 j +b ∈ Ui 

number of nontest cubes from Ui that ti avoids is denoted 

by na. 

If na < |Ui |, at least one of the nontest cubes in Ui prevents 

ti from detecting fi. If na = |Ui |, ti avoids all the nontest 

cubes in Ui, and ti may detect fi. Detection is not 

guaranteed, since the fault may have other nontest cubes 

that are not included in Ui . To check whether ti detects fi,

the procedure simulates fi under ti. If the fault is detected, 

the procedure returns si as the required seed. This may 

occur accidentally for the initial random seed. Otherwise, 

the procedure modifies si by complementing its bits one at 

a time in an attempt to detect the fault. The modification is 

guided by Ui as follows.  

Using  the  random  initialization  of  si ,  the  procedure  

assigns na,best  = na . The procedure considers the bits of 

si one at a time in a random order. When bit k is 

considered, the procedure complements the bit by 

assigning si (k) = si (k ).   

It then computes ti and na. If na ≥ na, best, the procedure 

accepts the complementation of bit k, and assigns na, best 

= na. Otherwise (na < na, best), it complements si (k) again 

in order to undo the complementation.  

If  bit  k  is  complemented  and  na     =   |Ui |,  the  

procedure simulates fi  under  ti. If the fault is detected, the 

procedure returns si as the required seed.  

The procedure considers all the bits of si repeatedly 

NMOD times, where NMOD is a parameter of the 

procedure. As na, best is increased, the procedure avoids 

more of the nontest cubes of fi. After na, best reaches |Ui |, 

ti may detect fi. As long as ti does not dete

procedure continues to modify si while ensuring that na = 

|Ui | for every bit that it accepts to complement. This 

increases the likelihood that fi will be detected. 

This process is different from a random search in that it 

avoids the nontest cubes from Ui, thus increasing the 

likelihood of detecting fi. As shown in [12], avoiding 

nontest cubes is sufficient for detecting hard

faults in benchmark circuits. The procedure for generating 

a seed si for a fault fi is provided in Procedure 1.

The worst case computational complexity of Procedure 1 

is deter-mined by its fault simulation effort in the case 

where it does not find a seed. In this case, it attempts to 

complement every bit of the seed NMOD times. For an 

LFSR with B bits, the number of attempts that the 

procedure makes is NMOD · B. For every attempt, it 

computes the test ti, and simulates fi under ti if na = |Ui |. 

Thus, in the worstcase, the procedure simulates fi under 

NMOD · B tests. 
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IV. Computation of Seeds for a 

Given a set of detectable target faults F, the procedure 

described in this section is applied to compute a set of 

seeds for F. The set of seeds is denoted by SNTC (for 

nontest cubes)  

The procedure considers the faults from F one at a time 

iteratively. Because of the random decisions made by 

Procedure 1, including the random selection of an initial 

seed, and because nontest cubes do not provide complete 

information about the values that are needed for detecting 

a fault, it is possible that a fault will be detected only after 

several iterations.  

In iteration I ≥ 1, the procedure considers every fault fi 

F. For fi, it computes the set of nontest cubes Ui.  It then 

calls procedure 1 to compute a seed. If a seed si is found, 

the proce- 

dure computes the test ti that the seed produces. It 

performs fault simulation with fault dropping of F under ti. 

It then adds si to SNTC.  

The  procedure  terminates  if  all  the  faults  in  F  are  

detected.In addition, the procedure has a termination 

condition based on its run time. This is given by the 

parameter RT. 

The procedure is summarized as procedure 2.The set of 

nontest cubes Ui for a fault fi is recomputed every time the 

procedure considers fi .Alternatively, the set can be 

computed once and stored for future 

detected. 

Although the run time of Procedure 2 is bounded by RT, it 

is interesting to consider the worst case computational 

complexity of an iteration of the procedure. This is 

determined by its fault simulation effort in the case where 

it does not detect any fault. In this case, the procedure calls 

Procedure 1 with every fault from F, for a total of |F | calls.  

Procedure 1 simulates a fault under at most NMOD · B 
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tests. Overall, in an iteration, Procedure 2 simulates a fault 

under at most NMOD · B · |F | tests. 

 

 

V. Experimental Results 

The main advantage of Procedure 2 is that it is not 

restricted by a given set of test cubes. The goal of the 

experiment described in this section is to show that this 

flexibility allows it to detect faults that are not detected by 

a procedure that uses test cubes. To achieve this goal, 

Procedure 2 is applied to the hard-to-detect faults that 

remain undetected by a procedure that is guided by test 

cubes. The experiment proceeds as follows. 

A procedure that was developed earlier, and is guided by 

test cubes, allows partial matches between the tests that the 

LFSR produces and the test cubes, as long as the tests 

detect target faults. Thus, the procedure is more flexible 

than a procedure that solves linear equations in order to 

find seeds for given test cubes. In an experiment whose 

goal was to study the effectiveness of this procedure, all 

the flip-flops of the circuit were included in a single scan 

chain, and a primitive LFSR from [13] was used for 

driving the scan chain directly. A binary search process 

yielded the LFSR with the smallest number of bits for 

which the procedure achieves the highest fault coverage. 

Let the number of bits in this LFSR be B0, and let the set 

of seeds be STC ( B0). 

In this brief, primitive B -bit LFSRs from [13] are 

considered for B = B0/2, B0/2 + 1,.., B0 − 1. Only one 

LFSR is given in [13] for every value of B, and this LFSR 

is used without any selection. For every value of B, the 

procedure based on test cubes is used for generating a set 

of seeds that is denoted by STC (B). With B < B0, there 

are cases where STC (B) does not detect all the detectable 

single stuck-at faults. Considering only the faults that 

remain undetected, Procedure 2 is used for generating a set 

of seeds that is denoted by SNTC (B).  

Procedure 2 is applied with the following parameter 

values. The number of times Procedure 1 considers the bits 

of a seed for complementation, NMOD, is determined as 

follows. For I ≤ 100, where I is the iteration of Procedure 

2, NMOD = I. For I > 100, NMOD   = 100.  Thus, the 

procedure considers all the bits of a seed once in iteration 

1, twice in iteration 2, and so on. Beyond iteration 100 (if 

it is reached), the procedure considers all the bits of a seed 

100 times. 

The run time limit RT is defined with respect to the 

normalized run time of Procedure 2. For normalization, the 

run time is divided by the run time for single stuck-at fault 

simulation of the tests produced by STC (B0). 

Normalization provides an indication of the computational 

effort of Procedure 2, which is based on fault simulation. 

The value of RT is such that the normalized run time is 

limited to 1000. 

Table II 

Benchmark Circuits  

 

 

The procedure based on test cubes was run with the same 

limit on its run time to compute STC (B), for B = B0/2, 

B0/2+1, ., B0 −1. A lower run time limit was used in the 

earlier study for computing B0 and STC (B0). 

A high limit on the run time was selected in order to allow 

everyone of the procedures a sufficient number of 

iterations for every fault. With this limit, the procedure 

based on test cubes is not likely to find additional seeds 

even if it is given a higher run time. The results are shown 

in Tables II–IV.  Table II shows all the benchmark circuits 

that are considered for this experiment. For every circuit, it 

shows the results of the procedure that is based on test 

cubes when it uses the B0-bit LFSR. Column in p shows 

the number of inputs to the combinational logic of the 

circuit. Column B shows the number of LFSR bits (the 
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value of B0). Column f.c. shows the single stuck-at fault 

coverage that the procedure achieves. Column seed s 

shows the number of seeds that the procedure produces. 

 For most of the circuits in Table II, the procedure based 

on test cubes achieves the highest possible single stuck-at 

fault coverage by detecting all the detectable faults. The 

fault coverage varies with the LFSR when test cubes as 

well as nontest cubes are used. Tables III and IV report on 

cases with B = B0/2, B0/2 + 1, ..., B0 − 1, where the use of 

nontest cubes improves the fault coverage compared with 

the use of test cubes. As B is increased, Tables III and IV 

report on caseswhere the fault coverage of STC (B) ∪ 

SNTC (B) increases as well. The only exception is s1423, 

where all the values of B are reported.  

For every circuit in Tables III and IV, column in p shows 

the number of inputs. Column B shows the number of 

LFSR bits, B. Column test cubes shows the results of the 

procedure that is guided by test cubes. The corresponding 

set of seeds is STC (B).Column nont est cubes shows the 

results of Procedure 2. The set of seeds considered in this 

case is STC (B) ∪ SNTC (B). 

 For both procedures, subcolumn f.c. shows the single 

stuck-at fault coverage.  Subcolumn seeds shows the 

number of seeds. Subcolumn nt i me shows the normalized 

run time of the procedure. In addition, for Procedure 2, 

subcolumn U shows the average number of nontest cubes 

in a set Ui based on which a seed was computed. For 

ISCAS-89 benchmarks in Table III, subcolumn left shows 

the percentage of detectable faults that are left undetected 

by Procedure 2. For comparison, subcolumn rand shows 

the percentage of detected faults that are left undetected 

when 16K random tests are simulated 

Table III 

Fault Coverage Improvement With Non-Test Cubes 

(ISCAS-89) 

 

Table IV 

Fault Coverage Improvement With Non-Test Cubes 

(ITC-99 and IWLS-05) 

 

The information for Procedure 2 is omitted in the case of 

s1423 if the use of nontest cubes does not increase the fault 

coverage. 

The following points can be seen from Tables III and IV. 

There are cases where the use of nontest cubes increases 

the fault coverage compared with the use of test cubes 

alone. The existence of such cases is significant given that 

the procedure based on test cubes already allows partial 

matches between the tests that the LFSR produces and the 

test cubes. Thus, it is not as constrained by the given test 

cubes as a procedure that solves linear equations for 

finding seeds. Even with this flexibility, the use of nontest 

cubes increases the fault coverage in a significant number 

of cases. 

Procedure 2 finds nontrivial numbers of nontest cubes for 

target faults. These nontest cubes are effective in guiding 

the generation of seeds. 

The  number  of  seeds  may  be  lower  after  nontest  

cubes  are generated because Procedure 2 applies forward-

looking reverse order fault simulation to remove seeds that 

become unnecessary. For this experiment, forward-looking 

reverse order fault simulation is applied to STC (B) ∪ 

SNTC (B). 

Detailed consideration of the normalized run times 

indicates that the procedures typically reach the final fault 

coverage with a normalized run time that is significantly 

lower than 1000. Thus, they can be run with a lower run 

time limit. This can also be seen in Tables III and IV, for 

example, from the case of s1423 with B = 17, where 

Procedure 2 terminates after detecting all the detectable 
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faults. It is also interesting to note that seeds are computed 

for faults that are not detected by random tests.  

Table V 

Using Non-Test Cubes Alone. 

 

Finally, Table V demonstrates that it is possible to use 

Procedure 2 for all the target faults, without first using test 

cubes to compute seeds. For Table V, the procedure based 

on test cubes and Procedure 2 are applied independently to 

all the target faults using the B0 bit LFSR. 

Table V demonstrates that Procedure 2 can compute a 

complete set of seeds. Its run time is higher as discussed 

earlier, supporting its use only for hard-to-detect faults. 

VI. Conclusion 

This   brief   described a procedure   for   computing   

seeds   for LFSR-based test generation without using test 

cubes. Instead, the procedure uses nontest cubes. This was 

motivated by the fact that a seed may not exist for a given 

test cube even though a seed may exist for a different test 

cube that detects the same fault. Thus, the use of test cubes 

limits the flexibility of a procedure to compute seeds for 

target faults. A nontest cube for a fault must be avoided in 

every test for the fault in order to allow the fault to be 

detected. Therefore, a nontest cube does not limit the 

ability of the procedure to compute seeds with a given 

LFSR. The cost of using nontest cubes is an increased 

computational effort for computing a seed. Experimental 

results demonstrated that, in spite of this cost, the 

procedure can compute seeds for some faults that cannot 

be detected by a procedure that uses test cubes. 
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