
Indian J.Sci.Res. 17(2): 492-502, 2018 ISSN: 0976-2876 (Print)

 ISSN: 2250-0138(Online)

1Corresponding Author

PROSPECTIVE RESEARCH ASPECTS IN SOFTWARE ENGINEERING FOR ANDROID

AND MINING APPLICATIONS

1
Mettu Jhansi Rani,

2
Venkata Kondaiah Bedadam , 3 Ms. Nandagiri Kiranmai

1,3
Department of Computer Science & Engineering, Bhoj Reddy Engineering College for Women,

Hyderabad.
2
Senior Software Engineer, Tech Mahindra, Hyderabad

Abstract— The rapid proliferation and ubiquity of mobile, smart devices in the consumer market has forced the software

engineering community to quickly adapt development approaches conscious of the novel capabilities of mobile

applications. The combination of computing power, access to novel on board sensors and ease of application transfer to

market has made mobile devices the new computing platform for businesses and independent developers The development

of millions of software applications for these mobile devices often called as ‘apps’. Current estimates indicate that there are

hundreds of thousands of mobile app developers. As a result, in recent years, there has been an increasing amount of

software engineering research conducted on mobile apps to help such mobile app developers. In this paper, we discuss

current and future research trends within the framework of the various stages in the software development life-cycle:

requirements (including non-functional), design and development, testing, and maintenance. While there are several non-

functional requirements, we focus on the topics of energy and security in our paper, since mobile apps are not necessarily

built by large companies that can afford to get experts for solving these two topics. The recent advances done in these

stages and then the challenges present in current work, followed by the future opportunities and the risks present in

pursuing such research.

Keywords—Mobile apps, Mining app markets.

I Introduction

In the context of this paper, a mobile app is defined as the

application developed for the current generation of mobile

devices popularly known as smart phones. These apps are

often distributed through a platform specific, and

centralized app market. In this paper, we sometimes refer

to mobile apps simply as apps. In the past few years we are

observing an explosion in the popularity of mobile devices

and mobile apps [17]. In fact, recent market studies show

that the centralized app market for Apple’s platform (iOS)

and Google’s platform (Android), each have more than 1.5

million apps [8]. These mobile app markets are extremely

popular among developers due to the flexibility and

revenue potential. At the same time, mobile apps bring a

whole slew of new challenges to software

practitionerssuch as challenges due to the highly-

connected nature of these devices, the unique distribution

channels available for mobile apps (i.e., app markets like

Apple’s App Store and Google’s Google Play), and novel

revenue models (e.g., freemium and subscription apps).

To date the majority of the software engineering research

has focused on traditional “shrink wrapped” software, such

as Mozilla Firefox, Eclipse or Apache HTTP [79].

However, researchers have begun to focus on software

engineering issues for mobile apps. For example, the 2011

Mining Software Repositories Challenge focused on

studying the Android mobile platform [90]. Other work

focused on issues related to code reuse in mobile apps

[84], on mining mobile app data from the app stores [34],

testing mobile apps [70] and teaching programming on

mobile devices [95]. Therefore, we feel it is a perfect time

to reflect on the accomplishments in the area of Software

Engineering research for mobile apps and to draw a vision

for its future. Note that we restrict to just the software

engineering topics for mobile apps in this paper, and even

that not exhaustively due to space restrictions (we skip

topics like usability or performance engineering since an

entire paper can be written on each of these topics). We do

not discuss the advancements in other areas of research for

mobile apps such as cloud based solutions, or networking

in mobile apps.

The purpose of this vision paper is to serve as a reference

point for mobile app work. We start by providing some

background information on mobile apps. Then, we discuss

the current state-of-the-art in the field, relating it to each of

the software development phases, i.e., requirements,

development, testing, and maintenance as shown in Figure

1. We also talk about two non-functional requirements:

energy use and security of mobile apps. Finally, even

though it is not one of the software development phases,

we talk about the software engineering challenges and

recommendations for monetizing mobile apps. Along with

a discussion of the state-of-the-art, we also present the

challenges currently faced by the researchers/developers of

mobile apps. Then we discuss our vision for the future of

software engineering research for mobile apps and the

risks involved, based on our experiences.

PROSPECTIVE RESEARCH ASPECTS IN SOFTWARE ENGINEERING FOR ANDROID AND MINING APPLICATIONS

Indian J.Sci.Res. 17(2): 492-502, 2018

Our hope is that our vision paper will help newcomers to

quickly gain a background in the area of mobile apps.

Moreover, we hope that our discussion of the vision for the

area will inspire and guide future work and build a

community of researchers with common goals regarding

software engineering challenges for mobile apps. A word

of caution though - the discussion of the current state-of-

the-art is not meant to be a systematic literature survey (for

a more comprehensive study please refer to Sarro et al.

[88]), and the future directions of research are based on our

opinions that have been influenced by our knowledge of

the research in this community. researchers have begun to

focus on software engineering issues for mobile apps. For

example, the 2011 Mining Software Repositories

Challenge focused on studying the Android mobile

platform [90]. Other work focused on issues related to

code reuse in mobile apps [84], on mining mobile app data

from the app stores [34], testing mobile apps [70] and

teaching programming on mobile devices [95]. Therefore,

we feel it is a perfect time to reflect on the

accomplishments in the area of Software Engineering

research for mobile apps and to draw a vision for its future.

Note that we restrict to just the software engineering topics

for mobile apps in this paper, and even that not

exhaustively due to space restrictions (we skip topics like

usability or performance engineering since an entire paper

can be written on each of these topics.

Fig. 1. A Framework For Presenting The State-Of-The-Art

In Software Engineering Research For Mobile Apps.

The rest of the paper is organized as follows: Section II

presents the necessary background information. Sections

III-IX discusses the various software engineering research

advance-ments made with respect to mobile apps. Section

X concludes the paper.

II. Background

Mobile apps have been around for a long time now. Back

in the 1990s they were usually created by device

manufacturers like Nokia and Motorola. These apps

performed certain basic tasks. Later on, wireless service

providers started making apps to differentiate the devices

sold on their network to others. At the same time, third

party companies started making apps for the mobile

platforms like the Windows mobile OS and the Symbian

OS. These included games for the devices and other utility

apps. However, there was no centralized place where end

users could acquire these apps.

The most modern iteration of the mobile apps started in

2007, when Apple announced the first generation of the

iPhones. At the same time Apple also announced the

centralized market for mobile apps called the ‘App Store’,

through which, the end users had to download all their

apps. Soon after in 2008, Google deployed their own

platform (Android) and their own app market the ‘Android

Market’ (which was later renamed as ‘Google Play’).

Similar app markets were released for the mobile phone

platforms developed by Microsoft, and BlackBerry as well.

With these other app markets, now the mobile app

developers have an even larger customer base to sell to. It

is estimated that there are currently 2.6 Billion mobile

phone users, who mostly own smart phones [59]. An

overview of the various stakeholders in the world of

mobile apps is shown in Figure 2.

With the introduction of app markets for each platform,

now developers have the ability to manage the distribution

of their software through one centralized market for each

platform.

All developers big and small have the same app market,

thus making it an even playing field for anyone to succeed.

Also, the app markets made it easy for the developers to

upload their apps, manage updates to them, and push the

latest version seamlessly to the end users. Thus a

combination of market potential, ease of use, and

democratized platform, made it highly lucrative for

developers to build mobile apps.

With the increased use of smartphones and mobile apps by

end users, and development of these mobile apps by

software developers, mobile apps became an obvious area

for software engineering researchers to examine. One of

the earliest software engineering papers on such mobile

apps was the study of micro apps on the Android and

BlackBerry platforms by Syer et al. [91], and one of the

earliest studies on the app markets was by Harman et al.

[34]. Since then, there have been plenty of studies on all

sorts of data that can be mined from the app markets, with

the app themselves being just one type of data.

We think the increase in such software engineering studies

on mobile apps are because of two reasons - (1) since the

app markets are publicly available, it is now possible to

mine the data relatively easily (although later in this

section we explore where researchers faced trouble in

getting this public data), (2) a variety of new types of data

that were previous not available are now available and

reliably well linked together. Some of these new types of

PROSPECTIVE RESEARCH ASPECTS IN SOFTWARE ENGINEERING FOR ANDROID AND MINING APPLICATIONS

Indian J.Sci.Res. 17(2): 492-502, 2018

data are discussed below (and a snapshot of the app store is

in Figure 3).

The app markets are not just a venue for the developers to

upload their app, and the user to download their app. App

markets also have a rating and review system in place,

where app users can describe their opinions on the app in

free form text. The review data is rich in what users want

from the app - both features and bug fixes, along with

praise for the features that they love. Therefore, such

review data has now become a treasure trove of data for

requirements engineering researchers (more about this in

Section III). Each of the reviews also have a numeric

rating, which are then aggregated to determine the overall

rating of the app, thus making it easy for users to know if

the past users thought an app was good or not.

Additionally, these numeric ratings also provided

researchers with a clear way of knowing if an app is good

or not, and if the review by an user is overall of a

complimentary or derogatory nature. Therefore,

researchers may only need natural language processing

techniques like sentiment analysis to know which parts of

a review was complimentary/derogatory of the app.

The app market also allows for the developer to post

release notes on each of the app’s versions. Researchers

are able to mine this information to determine how the

apps are evolving. Another piece of information available

in the app store for each app is the contact information for

the developer. Therefore, now researchers can contact app

developers with anything interesting that they find about

the app. We are also able to mine apps that are similar to

the current app, and therefore examine how similar or

different an app is from other apps.

Knowing the similarity between apps is further facilitated

in the app markets by the category classification. Each app

in the app store has to be classified in one of many

predefined

Fig. 2. Overview of the various stakeholders with respect

to modern day mobile apps.

Fig. 3. Snapshot of an app in the app market

categories. Therefore, now as researchers we have access

to apps that have been self reported to be in the same

domain. This gives researchers tremendous potential to

conduct research that can be controlled for the domain of

the app. Often we see that a software engineering research

study is done on an IDE, like Eclipse and another OSS

project like the browser Firefox [20]. However, we do not

know what domains of applications that these results

transfer to. In the world of mobile apps, if we conduct our

research on only game apps, then we can be more certain

that our findings would apply to other game apps.

Additionally, all these various data points are available for

hundreds of thousands of apps in a public facing website

making it a rich dataset for researchers to crawl.

A. Common Challenges

In the next section, we discuss the accomplishments, chal-

lenges and risks for each of the development phases.

However, one challenge seems to be a common challenge

that impacts all of the development phases, public access

to data. Such access challenges manifests in three ways.

Firstly, app stores restrict public access to their data and

typically only allow for access to a subset of all the user

reviews. For example, in the case of the Google Play store,

one can only access 500 reviews for an app.

Secondly, app stores do not provide the source code of the

apps, or any other associated artefacts like test code, or

design and requirement documents. Only the app binary

and release notes are made available.

Finally, with respect to the release notes, and the app

binary, one can only get them for the latest release. There

is no historical information that can be collected from the

app store (except user reviews). The only way to gather

PROSPECTIVE RESEARCH ASPECTS IN SOFTWARE ENGINEERING FOR ANDROID AND MINING APPLICATIONS

Indian J.Sci.Res. 17(2): 492-502, 2018

historical information on the various releases of the mobile

apps is to continuously mine the app stores at regular

intervals (like daily or weekly basis).

III. Requirements

A number of studies have focused on requirement

extraction for mobile applications. Contrary to traditional

work on software requirements, which mainly focused on

analysis of the requirements and specifications document,

the majority of mobile app-related studies leveraged app

reviews posted by users to extract requirements. For

example, Iacob et al. [40] used linguistic rules to detect

feature requests from user reviews. Then, they summarize

the feature requests to generate more abstract

requirements. Galvis-Carreno and Winbladh [27] extract

topics from user reviews in order to revise requirements.

They show that their automatically extracted requirements

match with manually extracted requirements. Guzman and

Maalej [30], [60] use natural language processing (NLP)

techniques to identify app features in the reviews and use

sentiment analysis to determine how users feel about app

features. They also compare their extracted features to

manually extracted features and find that the extracted

features are coherent and relevant to requirements

evolution tasks.

Besides requirements extraction from the user reviews,

there have been several studies on feature analysis. For

example Rein and Munch [78] present a case study for

feature prioritising. Finkelstein et al. [25] extract the set of

features from the release notes available in the app store

for a large collection of apps. They found a mild

correlation between the number of features in an app and

the cost of an app. Sarro et al. [89] examined feature

migration lifecycles among apps.

Finally many previous studies have looked at the app

reviews and tried to understand what complaints that users

have about an app [26], [38], [41], [43], [67], [71]. In a

previous study, we manually analysed and tagged reviews

of iOS apps to identify the different issues that users of

iOS apps complain about [46],

[49]. We hope to help developers prioritize the issues that

they should be testing for.

A. Challenges and Future Directions

The fact that requirements are extracted from app reviews

has its own challenges. In many cases and for many apps,

there may not be enough user reviews or the quality of the

reviews may be low. All of the aforementioned studies

need a high quantity and quality of user reviews. Chen et

al. have done some initial work in automatically

identifying reviews that are informative [19]. However,

there is still more work left to be done in this area. For

example even if there are high quality reviews available,

we do not know if we actually did get all the reviews from

the app store [64]. Typically app stores restrict the public

to be able to see only a subset of all the reviews. In the

case of Google Play it is 500 reviews. In the case of the

Windows Marketplace, they allow you to see as many as

can be loaded in the page before the browser crashes.

Therefore, we have a sampling issue, which has been

illustrated by Martin et al. [64]. One interesting problem

that has already been addressed by app markets like

Google Play is the ability for the developer to reply to user

reviews when they have addressed a requirement.

Another challenge is the applicability of the NLP

techniques used to extract requirements from app reviews.

However, off-the-shelf NLP tools are 1) not designed to

extract software requirements and 2) not designed to

analyze text from user reviews (which can be very brief,

tend to be highly unstructured, and have typos).

Therefore the natural directions of research in the area of

requirements engineering are as follows: building NLP

techniques that are not subject to the limitations in the user

reviews (and exploiting the newly available knowledge

bases), come up with sampling techniques that takes the

sampling bias into account, and building robust data

collection tools that are able to collect a more complete set

of reviews. All these research opportunities will allow us

to mine requirements from the user reviews in a more

efficient manner (as Maalej et al. state in their recent

publication [97], the future of requirements engineering is

data driven).

Some more recent research directions in requirements

engineering are (a) prioritizing features that have been

suggested by users. AR-Miner [19] has already scratched

the surface of this

problem, by proposing a novel ranking algorithm to

prioritize the groups of reviews identified. The authors also

found that their prioritization was comparable to actual

developers, and identifying traceability links between user

reviews and app features, such as the tool CRISTAL [72].

However, it is important to know if all users are equal or

are some users more influential and therefore, reviews by

them might be more impactful to implement. Another

complementary research problem is in determining which

features should be dropped?

B. Risks

One of the risks involved in pursuing the above lines of

research is that we may have reached the limits of NLP

when analysing poorly written user reviews. Another risk

is that maybe users prefer the features that they are

provided before they ask for it, and when the user

complains about the features, then it is already too late.

The only solution might be to build an updated review

system for the app stores that allows a better mechanism

for feature requests from the users.

PROSPECTIVE RESEARCH ASPECTS IN SOFTWARE ENGINEERING FOR ANDROID AND MINING APPLICATIONS

Indian J.Sci.Res. 17(2): 492-502, 2018

IV. Energy

Due to the fact that energy (or battery) is a scarce resource

for mobile devices, a plethora of studies have proposed

ways to measure and save energy of mobile apps. One of

the first works related to the measurement of energy of

mobile applications is GreenMiner by Hindle et al. [36],

[37], which is a dedicated hardware platform that enables

measurement of energy consumption of mobile devices. In

other work, Halo et al. [33] propose a technique that

leverages program analysis to provide per-instruction

energy modelling. They show that their approach can

estimate energy consumption to within 10% of the ground

truth for Android apps. Liu et al. [57], present their tool

Green Droid that will automatically identify the energy

inefficiency bugs in Android apps. Similarly Banerjee et

al. [15] detect energy bugs in mobile apps.

Other studies performed empirical research on energy

consumption in order to provide developers with ways of

minimizing it. For example, Pathak et al. [74] proposed a

taxonomy of energy bugs based on more than 39,000

posts. They also propose a framework for the debugging of

energy bugs on smartphones. Li et al. [52] perform an

empirical study on 405 apps to better understand energy

consumption. They make several interesting findings such

as: 1) the majority of a mobile app’s energy is spent in the

idle state and 2) networking is the component that is more

resource heavy. Linares-Vasquez et al. [54] present an

empirical study into the categories of API calls and usage

patterns that consume high energy. The findings of the

empirical study can help developers reduce the energy

consumption when using certain categories of Android

APIs. Wan et al. [98] propose a technique that detects UI

hotspots to help developers identify energy problems and

reduce energy consumption. Linares-Vasquez et al. [55]

propose a multi-objective approach that generates colour

themes that optimize energy usage of mobile apps.

A. Challenges and Future Directions

The two main challenges in energy related research for

mobile apps is not knowing what to measure for accurately

identifying energy issues, and then trying to fix the issues

for the developers. This is because the current state-of-the-

art tools are not easily accessible to developers. Therefore,

we need good estimates of energy use. In fact, there has

been very little work on even understanding how much

developers know about energy bugs [75], [73], and which

of their actions actually cause them [87], [86]. Knowing

more about developer coding habits and which ones cause

more energy bugs could be impactful research.

Future directions in energy research could be in the area of

identifying practical ways in which energy usage can be

improved in apps. Another potentially impactful area of

energy research is trying to understand how and when our

findings translate to other platforms. Currently most of the

energy research is happening on the Android platform. For

example will the same third party libraries have a similar

impact on the Windows or BlackBerry platform? If not,

then can we build tools that can make recommendations to

developers who are building cross-platform apps?

B. Risks

One of the more practical risks for researchers who want to

pursue this line of research is: access to the hardware that

can measure power or settle for software models that can

be inaccu-rate [53]. There are some initial solutions, like

the GreenMiner framework, that are available for

researchers to remotely access the hardware resources for

energy measurements [37]. Even when researchers have

access, there exists the issue of sampling frequency. If the

sampling frequency for energy measurement is longer than

the time interval in which energy bugs occur, then there is

a strong chance that the results are not consistent.

V. Security

A number of recent studies focused on the security of

Android apps. A tangential line of work to this is the

examination of permissions in mobile apps to prevent

security vulnerabilities [23], [13]. However in security,

there are two lines of research in the intersection of

software engineering, mobile apps and security. The first

line of work is in identifying vulnerabilities in apps. For

example, Chin et al. [21] propose a tool called ComDroid,

which detects communication vulnerabilities. Other work

by Sadeghi et al. [85] proposed COVERT, a technique that

detects inter-app vulnerabilities. Potharaju et al. look at

various attack strategies and defence techniques from

plagiarized mobile apps [76]. Quirolgico et al. present their

work on how to vet mobile apps [77]. Jha in their PhD

thesis catalogued a set of risks for mobile applications

[42].

The second line of research is in finding malicious apps.

For example Goral et al. [28] proposed the CHABADA

tool, which detects unexpected behaviour of Android apps.

CHABADA generates topics from app descriptions and

compares the behaviour of the app against its description.

The authors showed that CHABADA is effective in

flagging 56% of malware

without any knowledge of malware patterns. In other work

Avdiienko et al. [14] propose the Mudflow tool, which

aims at detecting malicious apps. Mudflow examines the

sources and sinks of data flows and examines if such data

flows use sensitive data such as device ID and phone

number. Then, Mudflow flags apps as being malicious if

their data flows deviate from the data flows in benign apps.

Arzt et al. [12] proposed the Flow Droid tool, which

performs static taint-analysis of Android apps. Appscopy

is a similar tool that detects Android malware through

static analysis [24].

PROSPECTIVE RESEARCH ASPECTS IN SOFTWARE ENGINEERING FOR ANDROID AND MINING APPLICATIONS

Indian J.Sci.Res. 17(2): 492-502, 2018

A. Challenges and Future Directions

Some of the well-known challenges that face static

analysis of software, apply to the security research

mentioned here as well. For example, it is well known that

most static analysis approaches suffer from a high rate of

false positives. That issue however, may be less critical for

mobile apps since they tend to be smaller in size. Other

work depends on data provided by the app developers,

such as the app’s description. Such approaches cannot

guarantee to perform well for applications that do not have

well documented descriptions.

Another challenge is the availability of data. Malicious

code and vulnerabilities in code are ever changing (and at

a great pace). In order to build techniques that can identify

secure code from non-secure code statically, we need

examples of both. However, there is a serious lack of

malicious/vulnerable apps. Arzt et al. [12] built a publicly

available benchmark suite of malicious apps called

DroidBench. However, even this benchmark just contains

120 apps currently. Thus there is a real need to bolster this

benchmark with more data.

There are many directions of future research that is

possible in this area. The most obvious of this is to

advance the state-of-the-art in static analysis research.

When it comes to malware research the ultimate goal is to

build a lightweight enough static analysis tool that can be

deployed at the app store and prevent malicious apps from

being uploaded to the store to begin with. Another

outcome of such research is to provide the end user with an

easy to use approach to understand what the app is doing

and if its behaviour is abnormal.

Another more difficult research problem is to understand

why developers are writing vulnerable code in the apps?

How can we help them prevent unintentionally created

security risks for end users? This line of research requires

us to understand how to write secure software first. Then

we need to be able to educate the developers. Meanwhile,

can we build indicators to determine if an app will likely

have vulnerable code in it or not?

B. Risks

Most of the work has been done for Android apps. This is

mainly due to the fact that the Android platform is more

open then other platforms, e.g., iOS or BlackBerry. Also

the apps are written in Java for which there exists many

decompiles and static analysis tools. Performing our

studies on Android causes a risk in terms of how

applicable the proposed approaches would work for mobile

apps from other platforms.

Another risk is in just focusing on reactive approaches to

security in order to solve the current security issues and

not focusing on preventive solutions. Focusing on reactive

approaches is not just an issue with mobile apps but with

all software. However, with mobile apps due to the speed

at which they are evolving, this issue could be even more

potent - as we may never catch up.

VI. Development

While there has been quite a bit of past work in the areas

of requirements, energy, security, testing and maintenance

for mobile apps, there has been very little work that has

been done on actually developing the apps. Most of the

work has been from the platform developers like Google

and Apple in providing the development tools required for

building the mobile apps.

One of the earlier research papers in software engineering

was by Syer et al. [91] who compared the source code of

Android and BlackBerry applications along three

dimensions, source code, code dependencies and code

churn. They find that BlackBerry apps are larger and rely

more on third party libraries, whereas, Android apps have

fewer files and rely heavily on the Android platform.

Hecht et al. [35] proposed a tool called Paprika to study

antipatterns in mobile apps using their byte code. Khalid et

al. [47] examined the relationship between warning from

FindBugs and app ratings. They find that certain warnings

correlate with app ratings. Cugola et al. [22] developed a

declarative language for a specific type of mobile app.

Around the same time, Tillman et al. developed Touch

Develop, a platform to build mobile apps for the Windows

Phone [96]. This platform was built to help novice

developers with little to no experience in either software

engineering or software development to build apps.

Additionally, Acerbis et al.built the Web Ratio Mobile

Platform for model-driven mobile app development [11],

[4].

A. Challenges and Future Directions

With the popularity of all platforms increasing in the past

few years, developers are tempted to develop the same app

for multiple platforms (cross-platform development). In

order to enable this, there are several frameworks that are

available

Sencha, PhoneGap, and Appcelerator Titanium to name a

few (some of the cross-platform development frameworks

like Cocos2d, Unity 3D, and Corona are specifically for

games). The developer has to build the app by only calling

the APIs present in these frameworks, and at build time, an

app for each platform is generated by the framework.

However, all these frameworks, due to their design have an

adverse affect on both the performance of the app and its

user interface. Very little research has been conducted to

help developers understand the costs and benefits of the

various approaches of developing cross-platform apps

[99].

This issue therefore, provides researchers with a

tremendous opportunity to positively affect the developers.

PROSPECTIVE RESEARCH ASPECTS IN SOFTWARE ENGINEERING FOR ANDROID AND MINING APPLICATIONS

Indian J.Sci.Res. 17(2): 492-502, 2018

Coming up with the next best cross-platform app

development approach would be of very high impact.

B. Risks

With the platforms evolving as fast as they are to keep up

with the competition, it may be very difficult to build a

static solution for cross-platform development - the

solutions must evolve just as fast. Additionally, there are

hardware and app market policy mismatches that have to

be taken care of. Even the study of the issues in cross-

platform development, may be difficult because it may be

difficult to link the apps across the app markets. Lastly, in

some cases, mobile app developers may obfuscate their

apps, making the study of their development a challenge

since one would need to deal with the obfuscation of the

code before being able to study the app.

VII. Testing

A wide range of studies have developed techniques to help

mobile app developers improve the testing of mobile

applications, in particular by trying to improve UI and

system testing coverage. Hu et al. propose the Monkey

tool, which automates the GUI testing of Android apps

[39]. Monkey generates random events, instruments the

apps and analyses traces that are produced from the apps to

detect errors. Another tool proposed by Machiry et al. [61]

is Dynordoid, which is a tool that dynamically generates

inputs to test Android apps. Contrary to Monkey,

Dynordoid enables the testing of UI and system events.

Due to this difference, the authors showed that Dynordoid

can achieve 55% higher test coverage compared to

Monkey. Mahmoud et al. [62] presented the EvoDroid

tool, which combines program analysis and evolutionary

algorithms to test Android apps. The authors show that

EvoDroid can outperform Monkey and Dynordoid,

achieving coverage values in the range of 70-80%.

Linares-Vasquez et al. [56] propose MonkeyLab, which

mines recorded executions to guide the testing of Android

mobile apps. While all these approaches are general

purpose test generation approaches, Kim et al. [51] look at

performance testing of mobile apps at the unit test level.

Different from the aforementioned work, another line of

work aims to help developers deal with the Android

fragmentation problem (i.e., the fact that Android has

many devices). For example, Ham came up with their own

compatibility test to prevent Android fragmentation

problems [31]. Khalid et al. [48] proposed an approach that

leverages user reviews to prioritize which Android devices

an app should be tested on. Han et al. [32] examine device

level fragmentation for the Android platform to understand

vendor-specific bugs.

A. Challenges and Future Directions

One of the biggest challenges that researchers face in their

current line of research on automated tests for mobile apps

is that they are not able to achieve high code coverage

[45], [80]. This is partially because of the inability to

produce a wide range and variety of inputs and partially

because of apps that are designed for user input (like game

apps or apps that require a login), which cannot be

automatically generated. Often the automated testing tools

are unable to proceed down a certain execution path due to

the inability to generate inputs, and therefore cannot test

anything further along that execution path. Therefore

research in generating a wider range of input that can

mimic a human could have a great impact on automated

mobile app testing tools.

Another challenge is that often researchers build tools that

will work on the app binary since that is the only thing to

which they have access. The availability of more OSS apps

could yield in more robust tools. One repository of OSS

apps is the F-Droid repository [2]. However, from past

research we know that only a very small percentage of

these apps are actually successful apps in the app market

[93]. A repository of OSS apps with the corresponding app

binaries made available as a benchmark suite could greatly

help researchers in advancing the state-of-the-art in app

testing. We would also like to point out that availability of

successful OSS apps would advance the state-of-the-art in

all areas of software engineering for mobile apps.

Currently most of the work as described above, focuses on

automated testing of mobile apps. Even with these tools,

the tests are often run on a single device and/or a

simulator. However, with the increased success of multiple

platforms there is now a large amount of cross-platform

apps. Additionally, in all the platforms the apps need to

run on different hardware with different versions of the OS

(either due to different versions of the device, as in the

case of the iPhone or on different devices, as in the case of

the Android/Windows Phone platforms). Thus even if the

app is tested on one device, there is no guarantee that it

may work on another device. However, these problems are

not entirely new. In the past software developers have had

to develop for the PC/Mac/Linux platforms with varying

hardware. While it is not a new problem, it still remains a

challenge to test these apps across varying hardware and

platforms. Thus one area of research with the potential for

high impact is that of cross-platform testing. A recent

study by Joorabchi et al. [44] describes a tool,

CHECKCAMP that tests for inconsistencies between iOS

and Android versions of mobile apps using extracted

abstract models. Such a study is a step in the right

direction, but a better understanding of cross-platform apps

is still needed.

B. Risks

One of the big risks in pursuing the above line of research

is that researchers may not have access to all the various

devices and/or platforms. Additionally, there is no easy

way to identify cross platform apps from the app stores. So

PROSPECTIVE RESEARCH ASPECTS IN SOFTWARE ENGINEERING FOR ANDROID AND MINING APPLICATIONS

Indian J.Sci.Res. 17(2): 492-502, 2018

far, there has been no effort to build such a database of

cross platform apps that researchers can analyse.

VIII. Maintenance

The area of software maintenance is one of the most

researched areas in Software Engineering. However, due to

the fact that mobile apps is a young subarea within SE, the

maintenance of mobile applications remains to be largely

undiscovered. Moreover, since mobile apps are different,

the studies related to the maintenance of mobile apps tend

to focus on issues that have not been traditionally studied

in past software maintenance studies. For example, most

mobile apps display advertisements, and as has been

shown in prior studies, these advertisements require a

significant amount of maintenance [82]. That said, a

number of prior studies investigated the maintenance of

mobile apps from different perspectives, e.g., code ruse

and ad-related maintenance.

Mojica-Ruiz et al. [84], [81] compared the extent of code

reuse in the different categories of Android applications.

They find that approximately 23% of the classes inherit

from a base class in the Android API and 27% of the

classes inherit from a domain specific base class.

Furthermore, they find that 217 mobile apps are

completely reused by another mobile app. Syer et al. [93]

compares mobile apps to larger “traditional” software

systems in terms of size and time to fix defects. They find

that mobile apps resemble Unix utilities, i.e., they tend to

be small and developed by small groups. They also find

that mobile apps tend to respond to reported defects

quickly. Minelli and Lanza [68], [69] proposed SAMOA, a

software analytics platform that was used to analyze 20

Android apps. Similar to Syer et al., one of their main

findings is that mobile and tradition software are different

since mobile apps tend to be very small in size, rely

heavily on third-party libraries and essentially do not use

inheritance. Bavota et al. [16], show that the quality (in

terms of change and fault-proneness) of the APIs used by

Android apps negatively impacts their success, in terms of

user ratings. Similarly, McDonnell et al. [65], study the

stability and adoption rates for the APIs in the Android

ecosystem.

Another line of work examined Android-related bug

reports. Bhattacharya et al. [18] study 24 mobile Android

apps in order to understand the bug-fixing process. They

find that mobile bug reports are of high quality, especially

for security related bugs. Martine et al. [63] analysed

topics in the Android platform bugs in order to uncover the

most debated topics over time. Similarly, Liu et al. [58]

detected and characterized performance bugs among

Android apps.

A. Challenges and Future Directions

Some of the challenges in maintenance research for mobile

apps is that often there is a lack of historical data. The

software maintenance research community has greatly

benefited from openly available artefacts like source

control and bug repositories of OSS projects. They now

have a large trove of data to evaluate their hypotheses on.

Such a support has spurred an increased level of research

in software maintenance as evidenced by the number of

research publications on it. However, for the most part

there are not many OSS mobile apps as discussed in the

previous section. Most of the current research is based on

the data available in the app markets. Therefore, with

limited fine grained commit level information it is difficult

to conduct maintenance research.

One interesting line of future research is in estimating the

maintenance cost for a mobile app. Currently there are just

anecdotal estimates [3]. Careful studies and insight into

this can greatly help small time mobile app developers to

plan ahead. While traditional maintenance issues like bug

localization may not be an issue due to the small size of

the apps, mobile app developers would like to be able to

triage features and bugs from the user reviews (as seen in

Section III).

Finally as mentioned in Section IX, there are several

companies that collect operational data from mobile apps

that have been installed on millions of devices. Most of

these companies provide the app developers with the data

and some rudimentary analysis on them. There is a wide

variety of reliability and performance problems that can be

solved by building tools and approaches that mine such

operational data (past work has barely scratched the

surface of such a problem by looking more at the server

side of mobile applications than the client side [92]).

B. Risks

From past research we have seen that mobile apps are

small [93], and have very quick release cycles [66]. With

such rapid release, it may be the case that the maintenance

effort might overlap a lot with the evolution effort. Hence,

it may not be easy to identify costs pertaining to

maintenance. Additionally, the variety of apps are far more

than the variety of successful desktop applications. For

example, a small recipe app like AllTheCooks [5], and a

large application like Microsoft Excel [7] are equally

popular, but they may have completely different

maintenance efforts. Thus the issue of placing the results

in the right context becomes paramount. Therefore, it is

highly recommended to keep track of the app domain

when conducting maintenance case studies.

IX. Monetization

Some of the successful gaming apps (like Angry Birds and

Candy Crush) and productivity apps (like Microsoft Excel)

are produced in established software development

companies with large teams. However, from past work, we

know that successful apps can be developed by one or two

core developers too [93]. In such apps where the

PROSPECTIVE RESEARCH ASPECTS IN SOFTWARE ENGINEERING FOR ANDROID AND MINING APPLICATIONS

Indian J.Sci.Res. 17(2): 492-502, 2018

development organization is small, often the developers

will also have to make several engineering decisions that

could affect their bottom line. Therefore software

engineering researchers have examined how we can

provide data to mobile app developers so that they can

make these decisions in a more careful fashion. Some of

these research studies are presented below.

Past research has found that ratings and downloads are

often very highly correlated [34]. Additionally, Kim et al.,

also found ratings to be one of the key determinants in a

user’s purchase decision of an app [50]. However, Ruiz et

al. examined the rating system in Google Play and found

that the current rating system of cumulative averages

across all versions of an app makes the ratings sticky and

thus does not encourage developers to improve their app

[83].

While ratings may not be a sufficient condition for more

downloads, it may be a necessary condition. With more

downloads, the developers stand to increase their revenues

as well. This is because, often mobile apps are just

monetized through in app advertising. The app itself is

given at no cost. If more users use an app, more ads are

shown to users, and more revenues are generated for the

app. A more detailed overview of the various stakeholders

with respect to mobile ads can be found in the work by

Ruiz et al. [82]. In the past, we have found the number of

advertising networks that a developer connects to does not

impact the user perception of an app (ie the rating) [82].

There were apps that used as many as 28 different ad

libraries, and still had a good user rating. This was

probably because, even though the developers connect to

many different networks through many different libraries,

they still were displaying just one ad at a time. Thus we

recommended, that a mobile app developer could add as

many ad libraries as they wanted (as long as they did not

disrupt the user experience) without impacting the rating.

However, we found that including particular ad libraries

could affect the rating. This was because, the ad libraries

were being intrusive, and the user perceived the app to be

intrusive as well. Hence, we recommended that the

developer be careful about what ad networks they were

connecting too. This study [82], is a good example of how

software engineering researchers could make software

related recommendations that could improve the

monetization strategies of an app.

Additionally we looked at the cost incurred by the users

when using a free app with advertisements in them [29].

We found that there are considerable energy, network and

performance related costs associated with ads. Thus we

recommend that users be careful when using an app with

ads. If users do realize this, then developers should be

ready with an alternative that has no ads (which could be

paid).

Currently there are also several analytics companies

(AppAn-nie [1], Quetta [9], Criticism [6] etc.) that provide

valuable usage data to developers for improving their

monetization strategies. They track the downloads of apps,

and how the apps are being used, when users purchase

things from the app etc. These companies are able to track

such user data, by incorporating tracking libraries in the

mobile devices. Using this information developers are able

to make smarter data driven decisions with respect to

making their app more successful. However, most of these

recommendations are more from a marketing perspective

than software engineering perspective.

A. Challenges and Future Directions

Even though, it finally comes down to the amount of

money made through an app in most cases, we as software

engineering researchers care more about what makes an

app successful. Success can mean different things to

different people. It could mean more downloads, it could

mean driving more users to a business that is outside the

mobile space, and it could mean just recognition by means

of having a high rating. Thus success is not just one fixed

measure, but one from a set of possible measures

depending on the context.

Depending on the choice of success measure, researchers

can then come up with various hypothesis for what factors

could affect this success measure. By gathering a set of

possible factors (independent variables), and the success

measure (dependent variable) for a large collection of apps

from the app store, we can then model the data to see when

an app can be successful. We can also see what factors are

most related to the success measure, and then carry out

controlled experiments to see how far the correlations

translate to causation. There has been some recent initial

work in this direction where Bavota et al. [16] looked at

the impact of using certain APIs on the ratings and Tian et

al. [94] model a set of factors (like size of app, complexity

of app and its UI, quality of the library code etc.) against

the ratings. They were able to find that there is initial

evidence that high rated apps have a certain DNA (certain

value for various factors). In the future, we need to come

up with more such factors to be evaluated, and strengthen

our current findings with user studies. These factors can be

derived through mobile app user and developer surveys for

example.

B. Risks

While there is tremendous potential in determining under

what circumstances an app will be successful, there are

certain risks too. It will be easy to misinterpret the

correlation in the data that we gather as causation. We

need to be rigorous in controlling for other factors like

category of apps, date apps were released, platform they

run on etc. We also need to identify these factors based on

common sense intuition and motivation based on previous

PROSPECTIVE RESEARCH ASPECTS IN SOFTWARE ENGINEERING FOR ANDROID AND MINING APPLICATIONS

Indian J.Sci.Res. 17(2): 492-502, 2018

work. It would be easy to correlate the name of an app

with the success of the app and conclude that app names

starting with a particular letter are more successful.

However, we should avoid such pitfalls and only model

factors that an app developer/past research would actually

consider as a factor that could affect the app success.

We also need to be careful about placing our results in the

correct context. Results that are obtained from free apps

may not translate to freemium apps (apps with in app

purchases) or paid apps. Freemium apps are those apps

where the app developer gives away the app for free and

then charges for additional features or content inside the

app. The paid monetization model is the traditional model,

where the app developer sells the app directly to the user

for a monetary price. There are has not been much

software engineering research on the freemium/paid apps

since they are more difficult for researchers to get access

to. Given this limitation we simply do not know how

results would generalize. Another challenge caused by the

lack of access to historical data, is the fact that success of

an app can change overtime, e.g., initially one might want

to just have a popular app, but later will look for revenues,

however it is difficult to capture such changes.

X. Conclusion

In conclusion, we believe that due to popularity of mobile

apps, and the impact that research can have on developers

from both small and large organizations, combined with

the abundance of publicly available data, interesting

research opportunities still left to be explored, and a

vibrant community being built around it, software

engineering research for mobile apps is a great place for

young researchers to start.

References

[1] App Annie, howpublished = Online:

https://www.appannie.com/, year = Last accessed

Oct 2015, source = https://www.appannie.com/,.

[2] F-Droid, howpublished = Online: https://f-

droid.org/, year = Last accessed Oct 2015, source =

https://f-droid.org/,.

[3] How much would it cost to make and to maintain

(operating costs) an instant messaging app like

whatsapp?, October 2015.

[4] Model-driven development based on omgs ifml

with webratio web and mobile platform. In Philipp

Cimiano, Flavius Frasincar, Geert-Jan Houben, and

Daniel Schwabe, editors, Engineering the Web in

the Big Data Era, volume 9114 of Lecture Notes in

Computer Science. 2015.

[5] Allthecooks recipies. Online:

https://play.google.com/store/apps/details?

id=com.mufumbo.android.recipe.search&hl=en,

October Last accessed Oct 2015.

[6] Crittercism. Online: http://www.crittercism.com/,

Last accessed Oct 2015.

[7] Microsoft excel. Online:

https://play.google.com/store/apps/details?

id=com.microsoft.office.excel&hl=en, October Last

accessed Oct 2015.

[8] Number of apps available in leading app stores as of

july 2015. On-line:

http://www.statista.com/statistics/276623/number-

of-apps-available-in-leading-app-stores/, Last

accessed Oct 2015.

[9] Quettra. Online: https://www.quettra.com/, Last

accessed Oct 2015.

[10] Shonan meeting on mobile app store analytics.

http://shonan.nii.ac.jp/seminar/070/, Last accessed

Oct 2015.

[11] Roberto Acerbis, Aldo Bongio, Stefano Butti, and

Marco Brambilla. Model-driven development of

cross-platform mobile applications with webratio

and ifml. In Proceedings of the Second ACM

International Conference on Mobile Software

Engineering and Systems.

[12] Steven Arzt, Siegfried Rasthofer, Christian Fritz,

Eric Bodden, Alexandre Bartel, Jacques Klein,

Yves Le Traon, Damien Octeau, and Patrick

McDaniel. Flowdroid: Precise context, flow, field,

object-sensitive and lifecycle-aware taint analysis

for Android apps. In Proceedings of the 35th ACM

SIGPLAN Conference on Programming Language

Design and Implementation.

[13] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang,

and David Lie. Pscout: Analyzing the android

permission specification. In Proceedings of the

2012 ACM Conference on Computer and

Communications Security.

[14] Vitalii Avdiienko, Konstantin Kuznetsov,

Alessandra Gorla, Andreas Zeller, Steven Arzt,

Siegfried Rasthofer, and Eric Bodden. Mining apps

for abnormal usage of sensitive data. In 37th

IEEE/ACM International Conference on Software

Engineering, Florence, Italy, May 16-24, 2015,

Volume 1, pages 426–436, 2015.

[15] Abhijeet Banerjee, Lee Kee Chong, Sudipta

Chattopadhyay, and Abhik Roychoudhury.

Detecting energy bugs and hotspots in mobile apps.

In Proceedings of the 22Nd ACM SIGSOFT

International Symposium on Foundations of

Software Engineering.

PROSPECTIVE RESEARCH ASPECTS IN SOFTWARE ENGINEERING FOR ANDROID AND MINING APPLICATIONS

Indian J.Sci.Res. 17(2): 492-502, 2018

[16] Gabriele Bavota, Mario Linares Vasquez,´ Carlos

Eduardo Bernal-Cardenas,´ Massimiliano Di Penta,

Rocco Oliveto, and Denys Poshyvanyk. The impact

of API change- and fault-proneness on the user

ratings of Android apps. IEEE Trans. Software

Eng., 41(4):384–407, 2015.

[17] Berg Insight. The mobile application market.

Online:

http://www.berginsight.com/ReportPDF/ProductShe

et/bi-app1-ps.pdf, Last accessed Oct 2013.

[18] Pamela Bhattacharya, Liudmila Ulanova, Iulian

Neamtiu, and Sai Charan Koduru. An empirical

analysis of bug reports and bug fixing in open

source Android apps. In Proceedings of the 2013

17th European Conference on Software

Maintenance and Reengineering.

[19] Ning Chen, Jialiu Lin, Steven C. H. Hoi, Xiaokui

Xiao, and Boshen Zhang. AR-Miner: Mining

informative reviews for developers from mobile

app marketplace. In Proceedings of the 36th

International Conference on Software Engineering.

[20] Tse-Hsun Chen, Stephen W. Thomas, Meiyappan

Nagappan, and Ahmed E. Hassan. Explaining

software defects using topic models. In

Proceedings of the 9th IEEE Working Conference

on Mining Software Repositories.

[21] Erika Chin, Adrienne Porter Felt, Kate Greenwood,

and David Wagner. Analyzing inter-application

communication in Android. In Proceedings of the

9th International Conference on Mobile Systems,

Applications, and Services, MobiSys ’11, pages

239–252, 2011.

[22] Gianpaolo Cugola, Carlo Ghezzi, Leandro Sales

Pinto, and Giordano Tamburrelli. Selfmotion: a

declarative language for adaptive service-oriented

mobile apps. In Proceedings of the ACM SIGSOFT

20th

