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Abstract- Most memory devices store and retrieve data by addressing specific memory locations. As a result, this path 

often becomes the limiting factor for systems that rely on fast memory accesses. The time required to find an item stored in 

memory can be reduced considerably if the item can be identified for access by its content rather than by its address. A 

memory that is accessed in this way is called content-addressable memory or CAM. Content Addressable Memory 

provides a performance advantage over other memory search algorithms, such as binary or tree-based searches or look-

aside tag buffers, by comparing the desired information against the entire list of pre-stored entries simultaneously, often 

resulting in an order-of-magnitude reduction in the search time. Different Content Addressable Memory algorithms are 

available today, each of them having its own advantages as well as disadvantages. Here study on Content Addressable 

Memory architecture and algorithm is done. The introduction of Sparse Clustered Network (SCN) had a great impact on   

Content Addressable Memory designs. A Content Addressable Memory based on Sparse Clustered Networks has been 

proposed. The dynamic energy consumption of the proposed design is significantly lower compared with that of other 

conventional low-power Content Addressable Memory design. 

Keywords- Content Addressable Memory (CAM), Sparse Clustered Network (SCN), Associative Memory; Message Error 

Rate (MER) 

I. Introduction 

 A Content Addressable Memory is a type of 

memory that can be accessed using its contents rather than 

an explicit address. In order to access a particular entry in 

such memories, a search data word is compared against 

previously stored entries in parallel to find a match. 

Each stored entry is associated with a tag that is used in 

the comparison process. Once a search data word is 

applied to the input of a Content Addressable Memory, 

the matching data word is retrieved within a single clock 

cycle if it exists. This prominent feature makes CAM a 

promising candidate for applications where frequent and 

fast look-up operations are required, such as in translation 

look-aside buffers (TLBs), database accelerators, image 

processing, parametric curve extraction, Hough 

transformation, Huffman coding/decoding and image 

coding. Although dynamic CMOS circuit techniques can 

result in low-power and low-cost  CAM’s, these designs  

can suffer from low noise margins, charge sharing, and 

other problems not to be energy efficient when scaled. 

Thus a new family of associative memories based on 

SCNs has been recently introduced and implemented 

using field-programmable gate arrays (FPGAs). Such 

memories make it possible to store many short messages 

instead of few long ones as in the conventional Hopfield 

networks with significantly lower level of computational 

complexity. Furthermore, a significant improvement is 

achieved in terms of the number of information bits stored 

per memory bit (efficiency). A low-power CAM 

employing a new algorithm for associatively between 

input tag and the Corresponding address of the output 

data which is based on sparse clustered network using 

binary connections that on-average eliminates most of the 

parallel comparisons performed during a search, is 

compared against various other content addressable 

memories. It was found that the dynamic energy 

consumption of the proposed design is significantly 

lower compared with that of a conventional low-power 

Content Addressable Memory design. Given an input tag, 

the proposed architecture computes a few possibilities for 

the location of the matched tag and performs the 

comparison on them to locate a single valid match. 

II. Literature Review 

 Yamagata T et al (1992) proposed a 288-kb (8K 

words X 36 b) fully parallel content addressable memory 

(CAM) LSI using a compact dynamic Content 

Addressable Memory cell with a stacked-capacitor 

structure and a novel hierarchical priority encoder [1]. The 

proposed CAM cell is shown in Fig 2.1. It consists of five 

NMOS transistors and two stacked capacitors. Four of the 

transistors (Ms0, Ms1, Mw0, and Mw1) are to store and 

access data, and one (Md) is used as a diode to isolate 

current paths during match operations. Charges are stored 

on stacked capacitors (Cs0, Cs1) and the Ms0 and Ms1 gates. 

The opposite electrodes of the Cs0 and Csl are connected to 

a cell plate voltage Vcp, which is equal to half Vcc (Vcc: 

supply voltage). Two bit lines are supplied with data in 

write and search operations. The word line (WL) allows 

write access to each cell in a word. The match line (ML) 
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passes through a word to perform a logical AND of the 

results of each cell’s comparison. The ML is also used to 

read cell data. The storage capacitor (Cso) is stacked on the 

gate of the Ms0 and Mw0. The gate electrodes of the Mso 

and Mw0 are fabricated with the first poly-Si layer [1]. The 

stacked capacitor is composed of the second poly-Si 

layer, the insulator film, and the third poly-Si layer. The 

second poly-Si layer (storage node) is also used to connect 

the drain (or source) of the Mw0 to the gate of the 

Ms0.Similarly, the storage capacitor (Csl) is formed on 

the gate of the Msl and Mwl. 

 A write operation is performed by activating a 

select WL and then driving the bit lines according to the 

write data. A read operation is accomplished by 

discharging the bit lines and then driving a selected ML to 

a high level. A read operation is accomplished by 

discharging the bit lines and then driving a selected ML to 

a high level. A match operation is achieved by 

precharging both the bit lines and the match lines to a high 

level, and then loading the bit lines with search data. 

When match occurs at several words in a search operation 

(multiple response), the CAM outputs the address of the 

matched word with the highest priority. A priority encoder 

(PE) circuit is utilized for multiple-response resolution 

and match address generation [1]. As a bit capacity of 

Content Addressable Memory’s becomes larger, the 

number of words increases rather than the bit length of 

words. Thus in a high density Content Addressable 

Memory chip, the configuration is such that the cell 

array is divided into several blocks.  This creates a 

serious problem concerning the layout of the priority 

encoder. When the priority encoder is incorporated in each 

block, the silicon area  occupied by the priority encoder 

and the power  dissipation of the priority encoder are 

increased in proportion to the number of divided blocks. 

So in order to overcome this, novel hierarchical priority 

encoder architecture suitable for high-density CAM was 

proposed. 

 

Fig 2.1: CAM cell structure with a stacked capacitor 

 In the novel CAM cells, since a stacked capacitor 

is adopted as the storage capacitor, a storage capacitance 

of 90ff is attained in a 66µm Content Addressable 

Memory cell using a 0.8µm CMOS process [1]. This is 

sufficient for the high soft-error immunity and provides 

stable performance of the operations mentioned above. 

Furthermore, it suggests the possibility of achieving a 

more compact Content Addressable Memory cell by 

device scaling. The novel hierarchical priority encoder 

reduces the circuit area and power dissipation. A typical 

search cycle time of 150ns and a maximum power 

dissipation of 1.1W have been obtained using circuit 

simulation. 

 Schultz K et al (1996) developed a CAM based on 

bank selection architecture. In the bank-selection 

architecture the CAM array is divided into B equally 

partitioned banks that are activated based on the value of 

added bits of length log2(B) to the search data word. These 

extra bits are decoded to determine, which banks must be 

selected. The basic concept is that bank selection divides 

the CAM into subsets called banks. The bank-selection 

scheme partitions the Content Addressable Memory and 

shuts off unneeded banks. Two extra data bits, called bank-

select bits, partition the Content Addressable Memory into 

four blocks. When storing data, the bank- select bits 

determine into which of the four blocks to store the data. 

When searching data, the bank-select bits determine which 

one of the four blocks to activate and search. The decoder 

accomplishes the selection by providing enable signals to 

each block [2].  In the original preclassification schemes, 

this architecture was used to reduce area by sharing the 

comparison circuitry between blocks. Although the blocks 

are physically separate, they can be arranged such that 

words from different blocks are adjacent. Thus only one of 

four blocks is active at any time, only 1/4 of the 

comparison circuitry is necessary compared to the case 

with no bank selection, thus saving area. Bank selection 

reduces overall power consumption in proportion to the 

number of blocks. Thus, using four blocks ideally reduces 

the power consumption by 75% compared to a Content 

Addressable Memory without bank selection. The major 

drawback of bank selection is the problem of bank   

overflow. Since, in a Content Addressable Memory, there 

are many more input combinations than storage locations, 

the storage of a bank can quickly overflow. For example, a 

Content Addressable Memory with 72-bit words (and an 

additional bank-select bit) and 32K entries divided into 

two banks with 16K entries.  

 While each bank has 16K locations, there are 

actually 2 possible entries per bank. Thus, it can often 

occur that there are more entries than can fit in the 

assigned bank [11]. This overflow condition requires 

extra circuitry and forces multiple banks to be activated at 

once, decreasing the savings in power. To avoid overflow, 

an external mechanism can balance the data in the banks 

by periodically re-partitioning the banks. 

Murkowski C et al (1997) developed a CAM 

aimed at reduced energy consumption. Energy reduction 

of Content Addressable Memory employing circuit-level 

techniques are mostly based on the following strategies: 
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1) Reducing the SL energy consumption by disabling the 

precharge process of SLs when not necessary and  

2) Reducing the ML precharging, for example, by 

segmenting the ML, selectively precharging the first few 

segments and then propagating the precharge process if 

and o n l y  i f  t h o s e  segments m a t c h  [ 9]. 

This segmentation strategy increases the delay as 

the number of segments is increased. A hybrid-type CAM 

integrates the low-power feature of NAND type with the 

high performance NOR is type while similar to selective 

precharging method, the ML segmented into two portions. 

The high-speed CAM designed in 32-nm CMOS   

achieves the cycle time of 290 Ps using a swapped 

Content Addressable Memory cell that reduces the search 

delay while requiring a larger Content Addressable 

Memory cell (11-transistors) than a conventional Content 

Addressable Memory cell [9 transistors(9T)] used in SCN- 

Content Addressable Memory [3]. A high-performance 

AND-type match-line scheme is proposed in, where 

multiple fan-in AND gates are used for low switching 

activity along with segmented style match-line evaluation 

to reduce the energy consumption. 

Lin C et al (2003) developed an architectural 

technique for saving power, which applies only to binary 

CAM, is pre-computation. Pre-computation stores some 

extra information along with each word that is used in the 

search operation to save power. These extra bits are 

derived from the stored word, and used in an initial 

search before searching the main word. If this initial 

search fails, then the Content Addressable Memory aborts 

the subsequent search, thus saving power.   The extra 

information holds the number of ones in the stored word. 

For example when searching for the data word, 10111, 

the pre-computation circuit counts the number of one’s 

(which is four in this case). Hence PB-CAM is also 

known as 1’s count [9]. First, it counts the number of 

ones in an input and then compares the result with that 

of the entries using an additional CAM circuit that has the 

number of Ones in the CAM data previously stored. This 

activates a few MLs and deactivates the others. In the 

second stage, a modified Content Addressable Memory 

hierarchy is used, which has reduced complexity, and has 

only one pull-down path instead of two compared with the 

conventional design. The modified architecture only 

considers 0 mismatches instead of full comparison since 

the 1s have already been compared. The number of 

comparisons can be reduced to M × [log (N +2)] + 

(M×N)/(N +1) bits, where M is the number of entries in 

the Content Addressable Memory and N is the number of 

bits per entry [3]. In the proposed design, we demonstrate 

how it is possible to reduce the number of comparisons to 

only N bits. Furthermore, in PB-CAM, the increase of the 

tag length affects the energy consumption, the delay, and 

also complicates the precomputation stage. 

 Pagiamtzis K et al (2004) developed a Content 

Addressable Memory which is a combination of pipelined 

architecture and hierarchical architecture. The power can 

be saved by power adding pipelining to match-lines and 

adding hierarchy to search-lines in an otherwise non  

pipelined, non hierarchical CAM. The power savings of 

the pipelined match-lines is a result of activating only a 

small portion of the match line segments. Similarly, the 

power savings of the hierarchical search-lines is a result of 

activating only a small portion of the local search lines. 

Pipelining match- lines saves 56% power compared to non 

pipelined match-lines. Adding hierarchy to search-lines 

saves 63% power compared to nonhierarchical search-

lines. The combination of the two techniques reduces 

overall power consumption by 60% [4]. 

 The match line is divided into five match line 

segments, each evaluated sequentially in a pipeline 

fashion. The left-most segment has 8 bits while the other 

four segments have 34 bits each, for a total of 144 bits (a 

typical word width used for IPv6 address lookup).The 

match line segment array (MLSA) current source that 

provides the current is divided among the five segments in 

proportion to the number of bits in each segment. This is to 

guarantee identical speed in all match line segments and to 

allow a fair comparison with the non pipelined 

architecture. The pipelined match line operates from left to 

right, with each match line segment acting as an enable 

signal for the match line segment array of the subsequent 

segment. Hence, only words that match a segment proceed 

with the search in their subsequent segments [4-9]. Words 

that fail to match a segment do not search for their 

subsequent segments and hence consume no power. 

 Having pipelined the match-lines, the significant 

portion of the power is now consumed by the highly 

capacitive search lines. This problem is solved by 

observing how the search lines are activated in the 

pipelined match line architecture. As the match signals 

traverse the pipeline stages from left to right, fewer match 

lines segments survive the matching test and hence fewer 

match line segments will be activated. However, the 

search lines must be activated for the entire array at 

every stage of the pipeline, since the search-lines must 

reach the surviving match-line segments. This excessive 

power consumption is curtailed in our design by breaking 

the search-lines into global and local search-lines (GSLs 

and LSLs), with the global search-lines using low-swing 

signaling and the local search-lines using full-swing 

signaling but with reduced capacitance. Also, by global 

search-lines not directly serving every single Content 

Addressable Memory cell on a search line, the global 

search-lines capacitance is further reduced, resulting in 

extra power savings. Consecutive sub search words are 

different. However, the cycle time is drastically increased 

when the search- data patterns are correlated. For 

example, if we have correlations in the first 8 bits of the 
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stored data, the cycle time is increased to 1.359 ns, which 

is 5.2 times that of the non-correlated scenario [7]. In the 

proposed design, the cycle time is independent of the 

correlation between the input patterns. Furthermore, the 

asynchronous architecture in is more susceptible to 

process variations compared with its synchronous 

counterparts. The concept for saving power is to change 

the encoding of stored data in the CAM cell. By storing the 

entry 101XX in a 5-bit ternary Content Addressable 

Memory, the stored word wi l l  match the four  search 

data wo r d s  10100, 10101, 10110, and 10111. 

Correspondingly, it can be viewed that a stored word in a 

ternary Content Addressable Memory as actually storing 

multiple words. This can be extended to multiple 

entries.  Thus, for example, the three entries 00011, 

001XX, 01000 will match any search word in the range 

00011 to 01000 [7]. Efficiently mapping a set of ranges 

to stored ternary Content   Addressable Memory words 

allows for reduction o f  t h e  size o f  t h e  C o n t e n t  

Addressable Memory required for an application. 

Reducing the number of entries also has the effect of 

reducing power consumption, since power consumption in 

Content Addressable Memory is proportional to the 

array size. To allow for a more dense encoding than 

conventional ternary Content Addressable Memory, 

propose changing the encoding of the Content 

Addressable Memory resulting in a smaller average 

number of entries. For the application of network routing, 

their scheme in comparison to conventional ternary 

encoding reduces the number of entries by almost 50% in 

some cases. 

 A group of two ternary cells is called a local match 

line in this scheme. In conventional ternary Content 

Addressable Memory encoding, there are three possible 

states (0, 1, X) for each ternary Content Addressable 

Memory cell and, correspondingly, nine states in total 

for two ternary cells. But only some of the possible 

combinations are available. For example, the combinations 

of 0, 2 and 1, 3 are available, but the combinations of 

0, 3 and 0, 2, 3 are not available. Since there are four 

storage cells for two ternary cells, there are actually 16 

possible states. This architecture is modified to 

accommodate the dense encoding. 

 

Fig 2.2: Two ternary CAM cells viewed as four 

independent half cells in the dense encoding system 

 The dense encoding scheme makes use of these 

previously unused states to make possible the storage of 

any   combination. The match line architecture is modified 

to accommodate the dense encoding. The match line is 

divided into local match lines (LMLs) and global match 

lines (GMLs). The global match lines are divided into sets 

of local match lines that are made up of four ternary half-

cells. A global match lines operates the same way as the 

conventional NOR does match line, where a path to 

ground indicate a miss and no path to ground indicate a 

match. The logic levels on the local match lines, however, 

are inverted so that a path to ground indicates a match, 

while no path to ground indicates a miss.  

 To see how this works, it is assumed that a local 

match line stores the numbers 0, 2, and 3, which 

accordingly means that ABCD a s  p e r  Table 2.1. In 

the case where the search word is 0, 2, or 3 

(corresponding to search lines set to 0001, 0100, and 

1000, respectively), there is a path to ground indicating a 

match. In the case of search for a 1 (corresponding to 

search lines set to 0010) there is no path to ground 

indicating a miss. The GMLs are used to construct 

longer words that are made up of multiple local match 

lines 

 The proposed algorithm lowers the error rate by an 

order of magnitude for our sample network with 60% 

deleted contents [8].Data storage and retrieval 

methodologies in associative memories are different from 

the widely- known indexed memories in which the data 

is written and accessed using explicit addresses. In 

associative memories, only associations between parts of 

data patterns are stored in a way that data can later be 

accessed by presenting a partial input pattern. Classical 

associative   memories implemented with Hopfield Neural 

Networks (HNN) store input patterns (messages) in a 

network consisting of nodes and connections between 

them, where the index of each data bit corresponds to that 

of a node. The decoding algorithm for Hopfield Neural 

Networks retrieves messages from partial inputs using the 

stored integer weights. A drawback of Hopfield Neural 

Networks is that the number of nodes in the network must 

be equal to the length of each message which, due to a 

fixed available memory capacity, limits the diversity of 

the stored messages the number of different messages 

the network can store. 

Table 2.1: Possible Encoding For Two Ternary Cells 

Dense Encoding 
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divided into several equally sized sub-blocks, which can 

be activated independently. For  a previously trained 

network and given an input tag, the classifier only uses a 

small portion of the tag and predicts very few sub-blocks 

of the content-addressable memory to be activated. Once 

the sub-blocks are activated, the tag is compared against 

the few entries in them while keeping the rest deactivated 

and thus lowers the dynamic energy dissipation. As shown 

in Fig 2.4, this architecture consists of a sparse clustered 

network based classifier, which is connected to a special-

purpose content- addressable memory array. The sparse 

clustered network based classifier is at first trained with 

the association between the tags and the address of the 

data to be later retrieved. 

 The proposed CAM array is based on a typical 

architecture, but is divided into several sub-blocks that can 

be compare-enabled independently. Therefore, it is also 

possible to train the network with the association between 

the tag and each content-addressable memory sub-block if 

the number of desired sub-blocks is known. Once an input 

tag is presented to the sparse clustered network based 

classifier, it predicts which content- addressable memory 

content-addressable memory sub- block(s) need to be 

compare-enabled and thus saves the dynamic power by 

disabling the rest. Disabling a content-addressable 

memory sub-block avoids charging its highly capacitive 

SLs, while applying the search data, and also turns the 

precharge path off for the MLs. 

 The SCN-CAM uses only a portion of the actual 

tag to create or recover the association with the 

corresponding output. The operation of the content-

addressable memory, on average, allows this reduction 

in the tag recalled from the memory. The decoding 

process [9] is divided into four steps  

1)  An input tag is reduced in length to q bits and divided 

into c equally sized partitions. The q bits can be 

selected within the tag bits in such way to reduce the 

correlation. 

2)  Local Decoding (LD): A single neuron per cluster in 

p1 is activated using a direct binary-to-integer 

mapping from the tag portion to the index of the 

neuron to be activated. 

3) Global Decoding (GD): GD determines which 

neuron(s) in P2 must be activated based on the results 

from LD and the stored connection values. If there 

exists at least one active connection from each cluster 

in P2 toward a neuron in P2, that neuron is activated. 

4)  If more than one neuron is activated in P2, then, the 

same number of word comparisons is required to 

detect the correct match. A single activated neuron 

means no further comparisons are required.   

Next section deals with the sparse clustered network 

based content addressable memory architecture. In order to 

exploit the prominent feature of the sparse clustered 

network associative memory in the classification of the 

search data, a conventional content- addressable memory 

array is divided into sufficient number of compare-

enabled sub-blocks such that:  

1)  The number of sub blocks are not too many to expand 

the layout and to complicate the interconnections and  

2)  The number of sub-blocks should not be too few to be 

able to exploit to energy-saving opportunity with the 

sparse clustered network based classifier.  

 Consequently, the neurons in P2 are grouped and O 

Red to construct the compare-enable signal(s) for the 

content-addressable memory array. Even the conventional 

content- addressable memory arrays are divided into  

multiple sub-blocks since long bit lines and SLs can slow 

down the read, write, and search operations due to the 

presence of drain, gate, and wire capacitances. The total 

number of sub-blocks can be selected depending on the 

silicon-area availability since each sub-block will slightly 

increase the silicon area. If the input data word is not 

uniformly distributed, more sub-blocks will be activated 

during a search consuming higher amounts of energy 

while them accuracy of the final output is not affected. 

Therefore, a false-negative output is never generated. 

However, since the full length of the tag is not used in 

sparse clustered network based content addressable 

memory; it is possible to select the reduced- length tag 

bits depending on the application and according to a 

pattern to reduce the tag correlation. A complete circuit 

for sparse clustered network based content addressable 

memory was implemented and simulated using HSPICE 

and TSMC 65-nm CMOS technology [9]. The energy 

consumption of sparse clustered network based content 

addressable memory depends on various design 

parameters, such as q, c, and the effect of non uniform 

input distributions, the energy The total energy 

consumption is divided into the energy consumption in the 

sparse clustered network based classifier (ESCN), and the 

content-addressable memory sub-blocks (ECAM). The 

SCN-based classifier’s contribution to the energy 

consumption includes decoders, EDec, SRAMs (accessed, 

ESRAMacc, and idle, ESRAMidle), and the logical gates 

to perform the GD and to generate the compare enable 

signals for the content-addressable memory array. Also it 

includes the content-addressable memory portion of the 

energy model consists of match (ECAM match ) and 

mismatch (ECAM mismatch ) portions, and Static energy 

consumption of the idle content-addressable memorys 

(ECAMstat ) due to the presence of leakage current 

occurring in advanced technologies of match (ECAM 

match ) and mismatch (ECAM mismatch ) portions. As the 

value of q is increased, the energy consumption is 
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decreased as well since the number of comparisons is 

reduced but up to a point until the energy consumption of 

the sparse clustered network based classifier itself would 

dominate that of the content-addressable memory array. 

Therefore, the energy consumption of the sparse clustered 

network based classifier is not dependent on the original 

tag length, and rather on the number of entries in the 

content-addressable memory array. 

Algorithm: 

 

Fig 2.5 shows the Design flow of system. 

 Once the input is given to SCN classifier, it predicts 

which CAM block has to be selected from the array. The 

classifier generates the compare- enable signals to array 

such that it avoids unnecessary search operations thus 

reducing the dynamic power 

III. Conclusion 

 This paper reviews implementation of a low power 

CAM based on sparse clustered network. In addition other 

CAM architectures and a comparative study on the 

same with latest proposed architecture are also included 

here. As a result of this analysis it came to conclusion that 

the proposed content- addressable memory architecture 

with sparse clustered network is more advantageous and  

reliable one as compared to other architecture sparse 

clustered network content addressable memory employs a 

novel associatively mechanism based on recently  

developed family of associative memories based on 

sparse cluster network. Sparse clustered network   

addressable memory is suitable for low- power   

applications, where frequent and parallel look-up 

operations are required. Sparse clustered network content-

addressable memory employs a sparse clustered network 

based classifier, which is connected to  several 

i n d e p e n d e n t l y  compare-enabled are enabled once a 

tag is presented to the sparse clustered network based 

classifier. By using independent nodes in the output part 

of sparse clustered network content-addressable 

memory’s training network, simple and fast updates can 

be achieved without retraining the network entirely. With 

optimized lengths of the reduced- length tags, sparse 

clustered network content-addressable memory eliminates 

most of the comparison operations given a uniform 

distribution of the reduced-length inputs. Depending on 

the application, non uniform inputs may result in higher 

power consumptions, but does not affect the accuracy of 

the final result. In other words, a few false-positives may 

be generated by the sparse clustered network based 

classifier, which are then filtered by the enabled content-

addressable memory sub- blocks.  
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