COMPARATIVE ANALYSIS OF Si AND 4H-SiC D-MOSFETs

PRABHUPADA SAMALa1 AND VEERA VENKATA SUBRAHMANYA KUMAR BHAJANAb

a, bSchool of Electronics Engineering, K.I.I.T. University, Bhubaneswar, Odisha, India

ABSTRACT

In the generation, storage and distribution cycle of the electric energy, the workhorse is the power transistor (MOSFET). These power transistors are developed on silicon semiconductor technology. To overcome the limitation of silicon technology, such as low band gap, less blocking voltage capability, low switching frequency, 4H-SiC D-MOSFETs are the material of choice. The 4H-SiC D-MOSFETs with wide band gap semiconductors can be able to operate at higher blocking voltage, high switching frequency, low-specific ON resistance and also it will allow to operate at very high temperatures. This paper aims on various design structures of 4H-SiC D-MOSFETs and its behavioral study for circuit application. The extracted parameters of D-MOSFETs are ON-resistance, blocking voltage, the sensitivity of temperature by using the TCAD simulations are presented to prove their characteristics.

KEYWORDS: 4H-SiC DMOSFET, Blocking Voltage, Switching Frequency.

Power transistors like bipolar junction transistors (BJTs), insulated-gate bipolar transistors (IGBTs) and power metal-oxide-semiconductor field-effect transistors (MOSFETs) are based on silicon semiconductor technology having wide usage in the field of power electronics and power systems. Power MOSFETs are capable of handling higher voltage and current levels. The great usage within the power-supply community is of power MOSFETs, because of their ease of drive along with their low switching losses makes them the absolute choice for high switching frequency applications. These power MOSFETs are being used in resonant converter and inverters with the maximum switching frequency upto 1 MHZ respectively. Recently, there is an increase in demand for power devices can withstand a very high voltage and higher switching frequency. These devices are mostly used for advanced power conversion systems (DC-DC, DC-AC). Power MOSFETs can be operating at a high temperature over 150\textdegree C. Silicon based devices are unable to operate properly at high temperature and high switching frequency, while the Silicon based MOSFET operating at high degree temperature requires costly cooling systems and display units. This may increase the overall cost, size and weight of the power conversion system. The main feature of Silicon carbide and gallium nitride semiconductor materials is wide band gap, which has the following advantages for power electronic designers are:

\begin{itemize}
 \item a lower intrinsic carrier concentration (10-35 orders of magnitude),
 \item a higher electric breakdown field (4-20 times),
 \item a higher thermal conductivity (3-13 times),
\end{itemize}

\textbullet and a largely saturated drift velocity (2-2.5 times), when compared to silicon.

Table I: Material Parameters of Silicon and Silicon Carbide

<table>
<thead>
<tr>
<th>Material</th>
<th>Energy Band gap</th>
<th>Critical/Avalanche Breakdown Field</th>
<th>Thermal Conductivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon</td>
<td>1.10</td>
<td>0.3</td>
<td>1.5</td>
</tr>
<tr>
<td>3C-SiC</td>
<td>2.20</td>
<td>1.2</td>
<td>4.5</td>
</tr>
<tr>
<td>4H-SiC</td>
<td>3.26</td>
<td>2.0</td>
<td>4.5</td>
</tr>
<tr>
<td>6H-SiC</td>
<td>3.00</td>
<td>2.4</td>
<td>4.5</td>
</tr>
</tbody>
</table>

From Table I, Silicon Carbide band gap energy of 2.2-3.3eV is larger than that of Si. 150 poly types SiC devices are introduced by many researchers, but only the 6H- and 4H-SiC poly types are available commercially. The 4H-SiC are primarily preferred for power devices because of its high carrier mobility and low dopant ionization energy. Also the high electric break-down field of SiC allows for thinner epitaxial layer to support the high blocking voltage in power devices. A 5000-V power device would require only 40-50\textmu m drift layer, as opposed to almost 500\textmu m in the case of silicon. This smaller drift layer leads to low drift resistance, hence low forward drop, conduction losses and thermal conductivity is 5W/cmK, allows for high junction temperature operation and efficient thermal management [Okayama et. al., 2008] [Chen et. al., 2016].

1Corresponding author
DEVICE STRUCTURES AND CHARACTERISTICS

Fig. 1 shows a simplified cross-section of the 4H-SiC DMOSFET. Here the channel length is 0.5µm, and the drift layer thickness is 10µm. When a positive gate bias, more than the threshold voltage is applied, the MOS channel turns on and electrons flow laterally from the n+ source, through the MOS channel on the implanted p-well. Then electron flow through the JFET region formed by two adjacent p-well regions and, finally, through the lightly doped n+ drift region into the backside drain. The MOS channel length is defined by the p-well and n+ source region; the MOS channel disappears when the gate electrode is shorted to the source or when a negative gate bias is applied. The total on-resistance of the 4H-SiC DMOSFET consists of channel resistance (R_{ch}), JFET resistance (R_{JFET}), spreading resistance (R_{sp}), drift-layer resistance (R_d) and substrate resistance (R_{sub}). When the MOS channel off, the 4H-SiC DMOSFET behaves as a 4H-SiC PiN diode. The device supports the high voltage by reverse biased pn junction formed by the implanted p-wells and the thick n+ drift layer.

Structure 1: Characteristics

The on-state I-V characteristics of the SiC DMOSFET designed by Sei-Hyung Ryu et al. illustrated in Fig.1, has measured at room temperature. When V_{GS} was 20V the specific on-resistance was 3.7mΩ-cm2, as the V_{GS} was reduced to 15V specific on-resistance was increased to 4.3mΩ-cm2. The forward voltage drop at an I_D of 30A was 1.1V with a V_{GS} of 20V and 1.3V with a V_{GS} of 15V (Fig. 2a) The blocking voltage was 1500V (Fig. 2b).

Figure 2: (a) On-state I-V Characteristics (b) Blocking characteristics (c) $I_D - V_{GS}$ Characteristics of the DMOSFET.

Structure 2: Characteristics

Figure 3: Simplified cross-section of the 4H-SiC DMOSFET.
The structure designed by Sei-Hyung Ryu et al shown in Fig.3, the $I_D - V_{GS}$ and blocking characteristics of the power MOS with an active area of 0.0278 cm2 is shown in Fig.4(a). Here the (V_{DS}) was set at 50 mV, the extracted V_{th} at room temperature was 3.8 V. The device is normally off and showed a stable avalanche characteristic at a (V_{DS}) of 2 kV (Fig. 4(b)) with a V_{GS} of 0V.

![Figure 4: (a) $I_D - V_{GS}$ characteristics of the DMOSFET (b) Blocking characteristics of the DMOSFET.](image)

Structure 3: Characteristics

The designed structure of Sumi Krishna swami et al depicted in Fig.5, the I_D versus V_{GS} characteristics having (W/L = 150µm/150µm), was measured, here the drift layer thickness was 85µm and the measured threshold voltage was 4V and the blocking voltage of the device was 10-kV which are depicted in the (Fig. 6).

![Figure 5: Cross-section of the Power MOSFET.](image)

![Figure 6: (a) $I_D - V_{DS}$ curve of the Power MOSFET (b) A leakage current of 198 µA at a drain bias of 10 kV.](image)

Structure 4: Characteristics

Fig.7 shows the 4H-SiC MOSFET structure designed by Lin Cheng et. al. in the chip size was of 7mm×8mm while active conducting area was of 0.4 . Below figure resembles the on-state I-V characteristic of the MOSFET which were measured from the range of 20° to 300° in pulsed mode using a Tektronix 371 curve tracer. The graph also depicts the temperature dependence of forward characteristics at a V_{G} of 20V. The SiC MOSFET was able to conduct over 200 A at temperature up to 300$^\circ$. Under a gate bias of 20V and I_D of 20A, the
(R_{ON,sp}) is increased from 3.4 mΩ.cm² at 20⁰ to 11.6 mΩ.cm² at 300⁰ while it increased from 4.7 mΩ.cm² at 20⁰ to 14.2 mΩ.cm² at 300⁰ at \(I_D\) of 200A (fig. 8).

\[V_{DS} = 3.68V \text{ with a } V_{GS} = 15V \text{. The specific on-
}\text{resistance (R_{ON,sp}) was 35.3mΩ.cm² and 27mΩ.cm² at V_{GS} values of 15V and 20V, respectively (fig. 10).}

\[V_{GS} \]

\[V_{DS} \]

\[I_D \]

\[V_D \]

\[R_{ON,sp} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]

\[V_{GS} \]
Structure 7: Characteristics

Fig. 13 shows the structure designed by A. Saha et al. have described a short-channel 4H-SiC power DMOSFET with several structural modifications to reduce the specific ON-resistance. The modifications were: (1) a heavily doped n-type current-spreading layer beneath the p-base; (2) a heavily-doped JFET region with narrow JFET width; (3) a “segmented” base contact layout; (4) tighter alignment tolerances to reduce cell pitch. Fig. 14(a,b) shows the variation of blocking voltage and specific ON-Resistance characteristics.

Figure 12: (a) ON-State characteristics of the DMOSFET with \(L_J = 8\mu m \). (b) ON-State characteristics of the DMOSFET with \(L_J = 6\mu m \).

Figure 13: A cross-sectional view of the DMOSFET cell

Figure 14: (a) Variation of Blocking voltage \((V_B) \), Specific ON-resistance \((R_{ON,SP}) \) with epilayer doping. (b) Variation of \(V_B \), \(R_{ON,SP} \) with CSL doping.

Figure 15: (a) ON-state characteristics of the device with JFET length of 1µm. (b) ON-state characteristics of the device with JFET length of 1.5 µm.
Fig. 16: Device Cross-sectional view of the 3300 V 4H-SiC DMOSFET.

Fig. 17: (a) I-V Characteristics. (b) I_D-V_D characteristics of the 3300 V 4H-SiC MOSFET

Fig. 18: Designed structure of 4H SiC D-MOSFET

The 4H-SiC DMOSFET structure design and simulation were carried out by using the T-CAD simulation tool. The designed structure shown in (Fig. 18)

Table II: Comparision of different Structure Parameters

<table>
<thead>
<tr>
<th>Structure</th>
<th>Drift layer Thickness (μm)</th>
<th>R_{on-sat} (mΩ-cm2)</th>
<th>Blocking Voltage (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure 1</td>
<td>10</td>
<td>3.7</td>
<td>1.5</td>
</tr>
<tr>
<td>Structure 2</td>
<td>12</td>
<td>10.3</td>
<td>2</td>
</tr>
<tr>
<td>Structure 3</td>
<td>85</td>
<td>123</td>
<td>10</td>
</tr>
<tr>
<td>Structure 4</td>
<td>10</td>
<td>11.6</td>
<td>1.2</td>
</tr>
<tr>
<td>Structure 5</td>
<td>33</td>
<td>27</td>
<td>3.3</td>
</tr>
<tr>
<td>Structure 6</td>
<td>20</td>
<td>27</td>
<td>2</td>
</tr>
<tr>
<td>Structure 7</td>
<td>7</td>
<td>6.95</td>
<td>1</td>
</tr>
<tr>
<td>Structure 8</td>
<td>32</td>
<td>27</td>
<td>3.3</td>
</tr>
</tbody>
</table>

The results obtained for the channel length 0.5μm and JFET width of 1μm of this structure are illustrated in Fig.19(a) I_D-V_D characteristics with 0-15 V drain voltage and 3.6 A maximum drain current. Similarly the simulation results achieved for I_D-V_G characteristics shown in Fig.19(b), by changing the gate voltage from 0-20V. By the way of increasing the drift layer the blocking voltage can be increased.
Figure 19: (a) I-V Characteristic. (b) I_d versus V_g characteristic with channel length of 0.5 µm and JFET region of 1 µm.

CONCLUSION

The paper presents the comparative analysis of different D-MOSFETs structures and simulation results of existed D-MOSFET structure. The main applications of these SiC devices can be operate at high-temperature with wide band gap semiconductors in power conversion technology. Future scope of this work focusing on the following variants in the structure; By increasing thickness of drift layer, the SiC device can have more blocking voltage and Specific On-state resistance can be reduced by minimal the width of JFET. These variants may improve overall performance of the device.

REFERENCES

Ryu S.H. et al., 2005. “10.3 mΩ/cm² 2/2 kV Power DMOSFETs in 4H-SiC,” in Power Semiconductor Devices and ICs, 2005.

Proceedings. ISPSD’05. The 17th International Symposium on, 275–278.

Licciardo G.-D. and Di Benedetto L., 2016. “SiO2/4H-SiC interface traps effects on the input
