SYSTEM MANAGEMENT FOR SEQUENTIAL CROPPING OF SWEET POTATO– BANANA- SWEET POTATO IN COCONUT GARDENS OF COASTAL ECOSYSTEMS

A.S. ANILKUMAR^{a1}, JACOB JOHN^b AND P.K. ISHRATH^c

^{ac}Department of Agronomy, College of Agriculture, Vellayani, Trivandrum, Kerala, India ^bI.F.S.R.S., Karamana, Trivandrum, Kerala, India

ABSTRACT

Coastal ecosystems in Kerala are dominated by coconut based cropping systems and it has cultural roots in our history. The present investigation entitled "System management for sequential cropping of sweet potato – banana - sweet potato in coconut gardens of coastal ecosystems" was conducted at the College of Agriculture, Padannakkad, Kasaragod during 2012-2016. The different nutrient doses tested for coconut were full dose, *i.e.*, 500:320:1200 g NPK ha⁻¹ year⁻¹ (C₁), $2/3^{rd}$ of the full dose (C₂), $1/3^{rd}$ of the full dose (C₃) and organic basin management (C₄) and for sequential crops, full dose (100 %), *i.e.*, 75 : 50 : 75 kg NPK ha⁻¹ year⁻¹ for sweet potato and 200 : 200 : 400 g plant⁻¹ for banana (S1) and 75 % of full dose (S₂). Significant influence of nutrient doses of the main crop was evident on nut production and application of $2/3^{rd}$ of the recommended dose resulted in the highest nut production during 1st, 2nd and 3rd year. Organic basin management significantly improved tuber yield in sweet potato during 1st and 3rd year. Application of full dose of nutrients increased tuber yield of sweet potato during 1st and 3rd year and bunch weight of banana during 2nd year. From the results it is concluded that integration of $2/3^{rd}$ of the recommended dose incommended dose of nutrients for coconut and 100 per cent for the sequential crops was necessary for maximizing total gross income in coconut based sweet potato – njalipoovan banana – sweet potato sequential cropping system.

KEYWORDS: Cropping Systems, Sequential Crops, Nutrient Management, Coconut

Coconut based cropping systems prevalent in coastal areas are poor in soil nutrient status, biological activity and other properties like poor water holding capacity, excessive infiltration, rapid leaching loss of nutrients. So adoption of suitable intercrops or sequential crops will favour the enrichment of soil resource base and soil properties through adequate supply of inputs like fertilizers, organic manures, plant protection chemicals etc.

Sustainable agriculture incorporates the idea of system approach. Compared to single units, efficient utilization of inputs are possible in systems. Coconut based systems are suitable to implement the sustainable approaches. So this will help to reduce the input use and a sustainable balance may be created between physico-chemical and biological properties of soil. In this context, an investigation entitled "System management for sequential cropping of sweet potato – banana - sweet potato in coconut gardens of coastal ecosystems" was conducted at the College of Agriculture, Padannakkad, Kasaragod during 2012- 2016 to develop a system based cost effective eco-friendly nutrient management practices in coconut based sequential intercropping systems of coastal ecosystems.

MATERIALS AND METHODS

The four year study was conducted in factorial RBD with three replications. Middle aged WCT coconut palms spaced at 7.6 m x 7.6 m were selected for the study.

Sweet potato variety Kanhangad local, banana variety njalipoovan and sweet potato were raised as sequential crops during first, second and third year respectively. The treatments consisted of combinations of 4 levels of NPK for the main crop and two levels of NPK for component crops. The different nutrient doses tested for coconut were full dose, *i.e.*, 500 : 320 : 1200 g NPK ha⁻¹ year⁻¹ (C1), $2/3^{rd}$ of the full dose (C2), $1/3^{rd}$ of the full dose (C3) and organic basin management(C4) and for sequential crops, full dose (100 %), *i.e.*, 75 : 50 : 75 kg NPK ha⁻¹ year⁻¹ for sweet potato and 200 : 200 : 400 g plant⁻¹ for banana (S1) and 75 % of full dose (S2). The experiment was carried out as part of EAP under the ongoing Kerala State Planning Board project. Four year data were collected and pooled analysis was carried out for coconut. For the sequential crops data were collected for a period of three Organic basin management (C4) for coconut years. consisted of green manuring in situ with the receipt of premonsoon showers, recycling of palm wastes after every harvest and application of FYM @ 50 kg + ash 5 kg + Azospirillum 25 g palm⁻¹ year⁻¹.

Recommended doses of organic manures were also applied along with treatments before the application of chemical fertilizers. For basin management plots, ash (2.5 kg palm⁻¹) and cattle manure (25 kg palm⁻¹) were applied in May. Cowpea seeds (20 g palm⁻¹) were sown in the basins at the time of pre-monsoon showers for *in-situ* green manuring and incorporated 45 days after sowing. Azospirillum (12.5 g plant⁻¹) was also applied along with cowdung slurry in June. The same pattern was followed during North-East monsoon in September. After every coconut harvest, recycling of palm waste was done with the available bio wastes. Sprinkler method of irrigation was practiced for the sequential cropping system.

RESULTS AND DISCUSSION

Nutrient dose for the main crop significantly influenced the productivity of coconut and application of

 $2/3^{rd}$ of the recommended dose resulted in highest nut production during first, second and third year. During fourth year, $1/3^{rd}$ of the recommended dose was sufficient to significantly enhance nut production. Pooled analysis of the data also revealed the significance of $2/3^{rd}$ of the recommended dose in significantly increasing nut production and the per cent increase over organic basin management was 28.49 per cent (Table-1).

 Table 1: Productivity of coconut as influenced by nutrient management and sequential cropping of sweet potato

 banana – sweet potato

Treatments	First year	Second year	Third year	Fourth year	Pooled Mean	
Factor A. Nutrient dose for the main crop (Coconut)						
C ₁	89.83	99.33	96.00	105.17	97.58	
C ₂	91.83	110.66	116.83	94.00	103.33	
C ₃	62.33	75.33	101.50	113.83	88.25	
C ₄	68.00	66.00	85.16	102.50	80.42	
SE	9.012	10.164	8.385	7.75		
CD (0.05)	19.329	21.799	17.985	16.63		
Factor B. Nutrient dose for the intercrop						
S_1	73.91	87.33	99.66	104.42	91.33	
S ₂	82.08	88.33	100.08	103.33	93.46	
SE	6.373	7.187	5.93	5.48		
CD (0.05)	NS	NS	NS	NS		
Interaction effe	cts (A x B)					
$C_1 S_1$	85.00	91.33	91.33	117.33	96.25	
$C_1 S_2$	94.66	107.33	100.66	93.00	98.92	
$C_2 S_1$	87.33	119.33	119.00	100.33	106.50	
$C_2 S_2$	96.33	102.00	114.66	87.67	100.17	
$C_3 S_1$	57.33	76.66	106.00	103.00	85.75	
C ₃ S ₂	67.33	74.00	97.00	124.67	90.75	
$C_4 S_1$	66.00	62.00	82.33	97.00	76.83	
C ₄ S ₂	70.00	70.00	88.00	108.00	84.00	
SE	12.745	14.374	11.86	10.96		
CD (0.05)	27.335	30.828	25.435	23.51		

Nutrient dose for the intercrop did not significantly influence the productivity of coconut throughout the four years of experimentation. Higher productivity was observed when the nutrient dose was reduced by 25 per cent, *i.e.*, application of 75 per cent of the recommended nutrient dose during 1^{st} , 2^{nd} and 3^{rd} year. A similar trend was observed with respect to pooled mean as well (Table 1).

Interaction effects indicated the superior performance of the treatment combination C_2 S_2 during first year, C_2 S_1 during 2^{nd} and 3^{rd} years and C_3 S_2 during 4^{th} year (Table 1).

It is concluded that integrated application of the $2/3^{rd}$ of the recommended dose of nutrients for coconut

and 100 per cent for the sequential crops (sweet potatofirst year; banana – second year; and sweet potato-third year) was beneficial for increasing nut yield in coconut which was 38.62 per cent higher compared to organic basin management of coconut combined with 100 per cent of the recommended dose for the sequential crops (Table 1).

Coconut, being an exhaustive crop depletes large quantities of plant nutrients to the tune of 20 to 174 kg N, 2.5 to 20.0 kg P_2O_5 and 35 to 49 kg K_2O ha⁻¹ through nuts, fronds, trunk, bunch, spathe, etc (Ouverier and Ochs ; 1978). Consequently, it removes a considerable amount of nutrients from the soil within few years. The nutritional balance is essential to achieve high nut productivity. Hence nutrients supplied through inorganic fertilizers were

sufficient to meet the requirements of both the main and intercrop, which is resulted in an increase in the yield of coconut and sequential crops. ha⁻¹) when organic basin management was practiced for coconut. Application of 100 per cent of the recommended dose of nutrients for coconut recorded lesser bunch yield of banana during second year whereas the other three treatments were on par (Table 2).

Significantly higher tuber yield in sweet potato was observed during 1^{st} and 3^{rd} year (7.67 t ha⁻¹ and 13.5 t

Table 2: Nutrient management and sequential cropping on biomass production of sequential crops (sweet potato)
banana – sweet potato) in coconut gardens

	First year	Second	l year	Third year
Treatments	sweet potato (t ha ⁻¹)	Njalipoovan (kg bunch ⁻¹)		sweet potato (t ha ⁻¹)
	Tuber	Pseudo stem	Bunch	Tuber
Factor A. Nut	trient dose for the main cro	op (coconut)		
C1	4.83	22.55	5.832	7.95
C ₂	5.58	23.63	7.198	9.12
C ₃	7.17	21.63	7.195	10.94
C_4	7.67	21.52	6.935	13.51
SE	0.95	1.808	0.416	1.57
CD (0.05)	2.04	NS	0.893	3.36
Factor B. Nut	rient dose for the intercro	р		
\mathbf{S}_1	6.83	22.60	7.094	10.85
S_2	5.79	22.06	6.486	9.91
SE	0.68	1.278	0.294	1.11
CD (0.05)	NS	NS	NS	NS
Interaction ef	fects (A x B)			
$C_1 S_1$	5.67	23.16	6.397	8.91
$C_1 S_2$	4.00	21.94	5.267	6.99
$C_2 S_1$	5.83	23.10	7.143	10.99
$C_2 S_2$	5.33	24.16	7.253	7.25
C ₃ S ₁	7.50	21.26	7.197	10.97
C ₃ S ₂	6.83	21.99	7.193	10.91
$C_4 S_1$	8.33	22.88	7.640	12.53
C ₄ S ₂	7.00	20.16	6.230	14.50
SE	1.35	2.557	0.5885	2.97
CD (0.05)	2.89	NS	1.262	6.38

Though not significant, application of 100 per cent of the recommended dose of nutrients increased tuber yield of sweet potato during 1^{st} and 3^{rd} year and pseudostem and bunch weight of banana during 2^{nd} year (Table 2).

Interaction effects indicated the significantly superior performance of sweet potato during 1st year under organic basin management for coconut was integrated with 100 per cent of the recommended dose for the sequential crops (Table 2).

Organic management of coconut basin was beneficial for improving soil resource base in several ways

for achieving higher productivity. Organic matter supplied by the manures to the soil keeps the plant nutrients bound on it and releases to the plant slowly, meeting the everlasting requirements. Similar results were reported by Krishnakumar et al. (2011), Maheswarappa et al. (2013) and CPCRI (2014).

During first year, the highest gross income and BCR of H 2,77,227 and 2.46 were recorded when $2/3^{rd}$ and 75 per cent of the recommended doses of nutrients were given to coconut and sweet potato (Table 3 and 4). The trend was similar during 2^{nd} year (H 5,63,876 and 3.24) and there was significant difference (Table 3 and 4). However, during 3^{rd} year, the highest gross income of H

3,84,589 and BCR of 3.71 were recorded under organic basin management (Table 3 and 4). During 4th year, 1/3rd of the recommended dose registered higher gross income and BCR (Table 3 and 4). These results were supported by earlier research findings of Anilkumar et al. (2017a) in turmeric- banana- turmeric sequential cropping system and Anilkumar et al. (2017b) in ginger- banana- ginger system in coconut gardens.

The total gross income of H 14,22,067 was recorded when coconut was given $2/3^{rd}$ of the recommended dose (Table 5). Though not significant, 75 per cent of the recommended dose of nutrients for the sequential crops registered the highest gross income of H 2,59,810 (Table 3) and BCR of 2.37 during 1^{st} year (Table 4). The trend was almost similar with respect to BCR during 2^{nd} year (Table 4). During 3^{rd} and 4^{th} year, 100 per cent of the recommended dose for the sequential crops gave higher gross income and BCR (Table 3 and 4). Analysis of the data over the four years indicated the

superior performance of 100 per cent of the recommended dose of nutrients for the sequential crops (H 13,63,784) (Table 5). Among the different treatment combinations, C_2S_2 and C_4S_1 recorded the highest gross income and BCR respectively during 1st year (Table 3 and 4). During 2nd year, C_2S_2 registered significantly higher gross income and BCR (Table 3 and 4). However, during 3rd year, C_2S_1 and C_4S_2 recorded higher gross income and BCR respectively. C_3S_2 recorded higher gross income and BCR during 4th year (Table 3 and 4).

Present study reveals the importance of integrated nutrient management in coconut gardens. Integrated management involving 2/3rd of the recommended dose of nutrients for coconut and 100 per cent for the sequential crops was necessary for maximizing total gross income in coconut based sweet potato – njalipoovan banana – sweet potato sequential cropping system. The results reveal the importance of efficient use of nutrients in coconut gardens through enhanced productivity and profitability.

ANILKUMAR ET. AL.: SYSTEM MANAGEMENT FOR SEQUENTIAL CROPPING OF SWEET POTATO...

Table 3: Economic analysis (Income in | ha⁻¹) of nutrient management and sequential cropping involving sweet potato – banana (njalipoovan) – sweet potato in coconut garden over four years

				•	h	,				
Tucatmonts		First year			Second year			Third year		Fourth year
	Coconut	Sweet potato	Total	Coconut	Njalipoovan	Total	Coconut	Sweet potato	Total	Coconut
			Factor .	A. Nutrient	dose for the m	ain crop (C	oconut)			
c'	189263	72500	261763	209278	272008	481286	207522	119250	326772	221568
C_2	193477	83750	277227	233155	330720	563876	246147	136775	382922	198042
C3	131325	107500	238825	158714	330577	489291	213843	164100	377943	239827
C_4	143264	115000	258264	139050	319407	458458	181889	202700	384589	215950
SE	18986.94	14295.11	26232.87	21412.82	17875.88	17875.88	15209.88	23499.27	23752.91	16332.14
CD (0.05)	40723.00	30660.00	NS	45926.00	38340.00	38340.00	32622.00	50401.00	50945.00	35029.00
			Fs	actor B. Nut	rient dose for	the intercro	d			
\mathbf{S}_1	155729	102500	258229	183996	326245	510241	212614	162712	375326	219988
\mathbf{S}_2	172935	86875	259810	186103	300111	486214	212087	148700	360787	217705
SE	13425.56	10108.22	18549.14	15141.34	12640.40	13055.36	10754	16616.55	16796.05	11548.45
CD (0.05)	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
				Intera	ction effects (A x B)				
$C_1 S_1$	179080	85000	264080	192423	296280	488703	202957	133600	336557	247201
$C_1 S_2$	199446	60000	259446	226133	247736	473869	212087	104900	316987	195935
$C_2 S_1$	183996	87500	271496	251415	328357	579772	250712	164850	415562	211385
$C_2 S_2$	202957	80000	282957	214896	333083	547979	241583	108700	350283	184698
$C_3 S_1$	120791	112500	233291	161523	330648	492172	223323	164500	387823	217003
$C_3 S_2$	141859	102500	244359	155905	330505	486411	204362	163700	368062	262651
$C_4 S_1$	139050	125000	264050	130623	349694	480317	173462	187900	361362	204362
$C_4 S_2$	147478	105000	252478	147478	289120	436598	190316	217500	407816	227537
SE	26851.44	20216.49	37098.97	30283.11	25280.56	26111.30	21510.15	33233.52	33591.67	23097
CD (0.05)	57590.71	43360.14	NS	64950.91	54221.49	56003.26	46134.76	71278.92	72047.07	49538.30

Indian J.Sci.Res. 19(1): 16-22, 2018

ANILKUMAR ET. AL.: SYSTEM MANAGEMENT FOR SEQUENTIAL CROPPING OF SWEET POTATO...

Fourth year Coconut 2.88 3.53 0.52 3.14 3.14 2.55 3.59 0.340.74 2.73 3.41 0.240.17 2.54 2.923.20 3.87 3.23 3.21 NS Total 2.79 3.403.49 0.463.39 3.30 0.15 2.863.67 3.12 3.42 3.47 3.96 0.300.65 3.57 3.71 2.71 0.21NS Sweet potato Third year 2.96 2.73 4.12 5.48 0.83 3.39 4.085.04I .25 3.99 3.74 2.64 4.04 4.03 4.601.770.58 3.27 0.41NS Coconut 3.15 0.16 3.46 2.69 3.402.87 3.02 2.63 2.75 3.29 2.74 3.00 0.67 0.220.473.03 3.33 3.01 0.31NS0.15 Total 2.69 2.89 2.78 0.232.87 2.920.082.65 2.74 3.23 3.25 2.97 2.740.333.24 garden over four years 2.81 2.81 0.11NS Njalipoovan Second year 2.76 2.67 3.26 3.26 3.13 0.36 3.13 0.12 2.58 3.06 3.08 3.45 0.173.043.47 3.25 3.01 0.240.51 NSCoconut 2.72 0.65 2.503.47 2.96 2.38 2.29 2.060.43 3.22 2.34 2.200.302.942.33 2.602.63 0.210.91 NS Factor A. Nutrient dose for the main crop (Coconut) Total 2.23 2.46 2.49 0.242.33 2.37 0.172.24 2.22 2.40 2.52 2.14 2.27 2.54 2.45 0.332.21 NS NS SS Factor B. Nutrient dose for the intercrop Sweet potato First year 1.800.76 2.76 2.082.67 2.85 0.35 2.19 0.25 2.082.14 2.58 3.06 2.640.501.072.51 1.51 2.01NSInteraction effects (A x B) Coconut 2.26 0.38 2.46 2.45 0.19 2.59 1.78 2.091.93 2.322.54 2.802.19 2.33 2.670.27 0.57 NS0.81 2.21 Treatments CD (0.05) CD (0.05) CD (0.05) $C_1 S_1$ $C_1 S_2$ $C_2 S_1$ $C_2 S_2$ $C_3 S_1$ $C_3 S_2$ $C_4 S_1$ $C_4 S_2$ S Ű $^{\rm C}_4$ $\frac{S_2}{SE}$ SE Ū SE $\bar{\mathbf{v}}$

Table 4: Economic analysis (BCR) of nutrient management and sequential cropping involving sweet potato - banana (njalipoovan) - sweet potato in coconut

Table 5: Economic analysis of nutrient management and sequential cropping involving sweet potato – banana (njalipoovan) – sweet potato in coconut garden over four years

Treatments	Total gross income (Rs. ha ⁻¹)				
Factor A. Nutrient dose for	the main crop (Coconut)				
C ₁	1291389				
C ₂	1422067				
C ₃	1345886				
C_4	1317261				
Factor B. Nutrient dose for the intercrop					
S ₁	1363784				
S_2	1324516				
Interaction effects (A x B)					
$C_1 S_1$	1336541				
$C_1 S_2$	1246237				
$C_2 S_1$	1478215				
$C_2 S_2$	1365917				
$C_3 S_1$	1330289				
$C_3 S_2$	1361483				
$C_4 S_1$	1310091				
$C_4 S_2$	1324429				

ACKNOWLEDGEMENT

We acknowledge Kerala Agricultural University and Kerala Planning Board for extending all the facilities and financial support. We also acknowledge the authorities of 27th Swadeshi Science Congress for giving an opportunity to publish the paper in IJSR.

REFERENCES

Anilkumar A.S., John J., Govindan M. and Ishrath P.K.; 2017a. System approach for nutrient management

in coconut based turmeric – banana- turmeric sequential cropping system. Abstract proceedings of the national seminar on natural resources management for horticultural crops under changing climatic conditions with special reference to drought management of plantation crops and spices, pp. 141-142.

- Anilkumar A.S., John J., Govindan M. and Ishrath P.K.;
 2017b. Productivity and profitability of coconut based ginger- banana- ginger sequential intercropping systems in coastal sandy zones. Abstract proceedings of the national seminar on natural resources management for horticultural crops under changing climatic conditions with special reference to drought management of plantation crops and spices, pp. 201-202.
- CPCRI [Central Plantation Crops Research Institute].; 2014. Annual Report 2013-2014. Central Plantation Crops Research Institute, Kasaragod, India: 140.
- Krishnakumar V., Maheswarappa H.P., Jayasekhar S. and Shanavas M., 2011. Economic evaluation of high density multi-species cropping system in root (wilt) affected coconut (*Cocos nucifera* L.) area in Kerala. J. Plant. Crops., **39**(1):125-130.
- Maheswarappa H.P., Dhanapal R., Subramanian P. and Palaniswami C., 2013. Evaluation of coconut based high density multi-species cropping system under organic and integrated nutrient management. J. Plant. Crops., 41(2):130-135.
- Ouverier M. and Ochs R., 1978. Mineral exportation of the hybrid coconut. PB. 121. Oleaginous, **33**:437-443.