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ABSTRACT
Power system stabilizers (PSS) have been extensively used in large power systems for enhancing stability of the system.

For this purpose there are verities of methods for determining of the controller coefficients of the system stabilizers. This paper
presents a novel approach for designing a self-tuning power system stabilizer (PSS) controller based on artificial neural network
(ANN). The nodes in the input layer of the ANN receive generator real power output, generator reactive power output, and
generator terminal voltage. While the nodes in the output layer provide the optimum PSS parameters, e.g. stabilizing gain, time
constants. Moreover Effects of changing generator real power on the parameters of the power system stabilizer is studied. Finally,
in order to show effectiveness of proposed methodology some simulation results on a power system in different operational points
are provided and compared with conventional PSS controller.
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high level of interest is the ability of ANN to realize

complicated nonlinear mapping from the input space to the

output space. TheANN based PSS proposed in the literature

may be classified into the following two categories.

1. At the first category of the ANN based PSS, the

ANN is used for real-time tuning of the parameters of the

conventional PSS (e.g. proportional and integral gain

settings of the PSS (Kundur; 1994)). The input vector to the

ANN represents the current operating condition, while the

output vector comprises the optimum parameters of the

conventional PSS. The ANN-tuned PSS can be regarded as

a kind of selftuning PSSs. The main advantage of ANN

tuned PSS over self-tuning PSSs is that theANN-tuned PSS

does not require system identification, while the

conventional self-tuning PSS does.

2. In the second category of the ANN based PSS;

the ANN is designed to emulate the function of the PSS and

directly computes the optimum stabilizing signal (Abed and

Varaiya, 1984) and (Caviars and Hranilovic, 1994).

The literature survey shows that in most of the past

research work pertaining toANN based PSS, the numbers of

neurons in the hidden layer have been chosen arbitrarily.

The main thrust of the research work presented in this paper

is to address to some of the important issues pertaining to the

design and performance evaluation of ANN based PSS, e.g.

selection of elements of input vector of the training patterns,

number of training patterns, selection of number of neurons

in the hidden layer, and performance of the system with ST-

Electro mechanical oscillations have been

observed in many power systems worldwide (Hsu et

al.,1987, Rogers, 2000). The oscillations may be local to a

single generator or generator plant (local oscillations), or

they may involve a number of generators widely separated

geographically (inter-area oscillations). Local oscillations

often occur when a fast exciter is used on the generator, and

to stabilize these oscillations, power system stabilizers

(PSS) were developed.

Power system stabilizers (PSS) have been

extensively used in large power systems for enhancing

stability of the system. The conventional fixed structure

PSS, designed using a linear model obtained by linearizing

nonlinear model around a nominal operating point provides

optimum performance for the nominal operating condition

and system parameters. However, the performance

becomes suboptimal following deviations in system

parameters and loading condition from their nominal

values.

In recent years, self-tuning PSSs, variable

structure PSSs, fuzzy logic PSSs and artificial neural

network (ANN) based PSSs (Klein et al., 1991) and

(Mithulananthan and Srivastava, 1998) have been proposed

to provide optimum damping to the system oscillations over

a wide range of system parameters and loading conditions.

Two reasons are put forward for using ANN First, since an

ANN is based on parallel processing, it can provide

extremely fast processing facility. The second reason for the
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ANNPSS under wide variations in loading. The main

objectives of the research work presented in this article are:

1. To present a systematic approach for designing a

multilayer feed forward artificial neural network based self-

tuning PSS (ST-ANNPSS).

2. To suggest an approach for selecting the number

of neurons in the hidden layer.

3. To study the dynamic performance of the system

with ST-ANNPSS and hence to compare with that of

conventional PSS.

4. To investigate the effect of variation of loading

condition on dynamic performance of the system with ST-

ANNPSS.

The A single machine-infinite bus (SMIB) system

is considered for the present investigations. A machine

connected to a large system through a transmission line may

be reduced to a SMIB system, by using Thevenin's

equivalent of the transmission network external to the

machine. Because of the relative size of the system to which

the machine is supplying power, the dynamics associated

with machine will cause virtually no change in the voltage

and frequency of the Thevenin's voltage EB (infinite bus

voltage). The Thevenin equivalent impedance shall

henceforth be referred to as equivalent impedance

(i.e.Re+jXe). The nominal parameters and the nominal

operating condition of the system are given in theAppendix.

Conventional PSS comprising cascade connected

lead networks with generator angular speed deviation ( ).

The System Modeling
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Figure1: A single machine-infinite bus (SMIB) system
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Figure 2: Transfer function block diagram of the system

As input signal has been considered. Figure, 1 shows a

single machine-infinite bus (SMIB) system.

Figure, 2 represents a transfer function block

diagram of the system, through which an electrical torque is

produced in response to speed deviation signal ( ),

whereas GEP(s) is a transfer function of the system whose

output is electrical torque and input is stabilizing signal.

In order to increase damping of the rotor

oscillations, a PSS utilizing shaft speed deviation as input

signal must compensate for the phase-lag of GEP(s) to

produce a component of the torque in phase with speed

deviation (Lautenberg et al., 1997). The transfer function of

a PSS is represented as

The Power System Stabilizer and the Design

Considerations

Where K is stabilizer gain, FILT(s) is combined

transfer function of torsional filter and input signal

transducer, Tw is washout time constant and T , T ,T , T ,

are time constants of the lead lag networks. An optimum

stabilizer is obtained by a suitable selection of time

constants Tw, T , T ,T , T , and stabilizer gain . Two

identical lead-lag networks can be chosen for a

STAB

1 2 3 4

1 2 3 4 STABK
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SMIB system, the generator terminal complex power (P

+jQ) generator terminal voltage (Vt) equivalent reactance

Xe and infinite bus voltage EB are related as

Let us consider EB as a reference p

hasor, and Vt =Vtd+jVtq From Eq. (2), we get

The Eqs. (3) and (4) are independent equations in terms of

E , Vt, P, Q, Vtd and Xe, Assuming E =1  . we are left with

five variables and two equations. If three of these five

variables are assumed then other two can be determined.

Thus, the operating condition is characterized by three

variables out of the five. Since P, Q and Vt are measurable at

the terminals of the generator, these are chosen as the

coordinates of the input space. Thus the nodes in the input

layer of ANN receive generator real power output (P),

generator reactive power output (Q), and generator terminal

voltage (Vt). In the present investigations, two identical

B B pu

conventional PSS (i.e. T = T and T = T ). This choice

reduces the number of parameters to be optimized. The filter

is used for attenuating the stabilizer gains at turbine-

generator shaft torsional frequencies and may be neglected

while designing PSS. The design considerations and the

procedure for selecting the PSS parameters are as follows.

To damp rotor oscillations, the PSS must produce a

component of electrical torque in phase with the rotor speed

deviation. This requires phase-lead circuits to compensate

the phase-lag between exciter input (i.e. PSS output) and the

resulting electrical torque. The phase characteristic of the

system (i.e. GEP(s)) depends on the system parameters and

the operating condition. The required phase-lead for a given

operating condition and system parameters can be achieved

by selecting the appropriate value of time constants T -T .

The signal washout is a high-pass filter that

prevents steady changes in the speed from modifying the

field voltage. The value of the washout time constant Tw

should be high enough to allow signals associated with

oscillations in rotor speed to pass unchanged. From the

viewpoint of the washout function, the value of Tw is not

critical and may be in the range of 1-20 s. For local mode

oscillations in the range of 0.8-2.0 Hz, a washout time

constant of about 1.5 s is satisfactory. From the viewpoint of

low-frequency inter-area oscillations, a washout time

constant of 10 s or higher is desirable.

Ideally, the stabilizer gain should be set at a value

corresponding to optimum damping. However, this is often

limited by other considerations. It is set to a value, which

results in satisfactory damping of the critical modes without

compromising the stability of the other modes, and which

does not cause excessive amplification of stabilizer input

signal noise.

Figure, 3 depicts the schematic diagram of a

synchronous generator with ST-ANNPSS. TheANN is used

for tuning the parameters of the PSS in real-time. For a
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Figure 3 : The Schematic Diagram of A Synchronous
Generator With ST-ANNPSS
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computed using phase compensation technique. The output

vector of the training patterns, thus, becomes K , T  and

T  .

The architecture of the feed forward ANN

comprises an input layer, one or more hidden layers and an

output layer (Zhang et at., 1995). For the present

investigations, the elements of input vector are P, Q and Vt

and that of the output vector are K , T  and T hence three

neurons are needed in each of the input and the output

layers. One hidden layer is chosen to start with.

The ANN is trained presenting the training

patterns using Trainlm function of Neural Network Toolbox

of the Matlab software in order to arrive at an optimum

number of neurons in the hidden layer. The investigations

clearly show that for the present study, a set of 400 training

patterns is adequate for training the ANN and hence, 400

training patterns are used for further studies. Figure, 4

shows the general topology of neural network model (Guan

et al.; 1996).

Table 1, shows the optimum PSS parameters

* *

*

* * 2*

STAB 1

2

STAB 1

Selection of Number of Neurons in the Hidden Layer

)(

1
2

a
T

nw
=

lead-lag networks are chosen for the conventional PSS (i.e.

T = T and T = T ), hence the parameters of the PSS to be

tuned in real-time are K , T , T . Thus the nodes in the

output layer provide the desired PSS parameters K ,

T and T .

The phase compensation technique (Hsu and

Chen; 1991) is used for optimizing PSS parameters. It

comprises the following steps.

1. Computation of the time constants of the lead

networks: The phase angle of the transfer function GEP(s) is

computed for s=jn .This phase angle is denoted as .

The time constants of the lead networks are

computed so as to compensate the phase angle of the

system. Hence T and T are computed as follows.

2. Computation of stabilizer gain for the desired damping

ratio . For the electro mechanical mode the stabilizer gain

(kSTAB) is computed using the following equation.

Where natural frequency of oscillation of the

mechanical loop , transfer function

of the phase compensator 2 and is desired damping ratio

(=0.5 is assumed in the research work presented here).

The training set should be so generated that it

covers the complete domain of operation (Zhang et al.,

1993). For generating training patterns; P, Vt and Q are

assumed to vary over the typical ranges given as: P: 0.5-1.0

p.u.; Vt: 0.9- 1.1 p.u.; Xe: 0-0.5 p.u.

A set of 500 operating points is generated,

randomly. It is important to highlight that P, Q and Vt are

chosen as the elements of input vector since these can be

measured easily. For each of the 500 training points, the

optimum parameters of the PSS (K , T  and T  ) are

1 2 3 4
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Figure 4 : Designed neural network architecture
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spread over the entire domain of operation for which the

ANN was trained, are chosen for assessing the robustness of

the ST-ANNPSS

P=0.6 p.u, Q=0.2 p.u, Vt=1 p.u

P=0.8 p.u, Q=0.32 p.u, Vt=1 p.u

P=0.1 p.u, Q=0.5 p.u, Vt=1.1 p.u

(K , T  and T  ) computed using trained ANN with seven

neurons in the hidden layer. It is clearly seen that the PSS

parameters computed using ANN match very closely with

the corresponding off-line computed optimum values.

Studies were also carried out, by adding second

hidden layer, and the investigations revealed that there is no

merit in adding second layer. Hence, ANN with seven

neurons in the hidden layer is chosen for further studies.

The dynamic performance of the system with ST-

ANNPSS is now evaluated over a wide variation in loading

condition. Following three typical loading conditions

* * *

STAB 1 2

Dynamic Simulation of the System with ST-

ANNPSS

Input
On - Line

computing

(ANN - PSS)

Off - line

computing

(CPSS)

P Q V K PSS T1 T2 K PSS T1 T2

0.730

0.970

0.760

0.990

0.850
0.870

0.600

0.860

0.900

0.9 00

0.070

0.270

0.190

0.230

0.150
0.070

0.220

0.280

0.280

0.190

0.940

0.990

0.950

0.930

0.960
0.910

1.060

0.980

1.020

0.900

20.52

22.37

19.95

19.23

21.07
18.67

27.20

22.08

23.63

18.33

0.325

0.323

0.323

0.324

0.317
0.326

0.303

0.314

0.308

0.328

0.056

0.055

0 .056

0.056

0.056
0.057

0.055

0.055

0.055

0.057

21.09

22.01

21.44

19.14

21.46
19.48

26.79

22.02

23.61

18.51

0.314

0.304

0.323

0.328

0.308
0.317

0.305

0.317

0.053

0.341

0.056

0.054

0.056

0.057

0.055
0.058

0.056

0.054

0.053

0.058

Table 1 PSS Parameters Computed Using Trained ANN and Corresponding Off-Line
Computed Optimum Values for 10 Test Operating Conditions

:

Figure 5 : Error graph of neural network model
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Figure 7 : Dynamic responses for , in the second
operating point

ω  δ

In figure 9, 10 effects of changing generator real power of

generator on K1 and K3 are shown. As seen, by increasing

of the active power, K1 will be decreased smoothly,

however k3 is constant..

In figure 11, 12 effects of changing active power of

generator on K2 and K4 are depicted.As seen, by increasing

of active power, K2 and K4 will be increased.

In figure13, 14 effects of changing active power of

generator on K5 and K6 are shown. As seen, by increasing

of active power, K5 and K6 will be decreased.

overshoot also there is not undesirable transient oscillation

in the response

The result imply the lack of the robustness in

conventional PSS against the variation of the operational

conditions, however the system dynamic performance with

ST-ANNPSS is quite robust over the entire domain of

loading.

Effects of changing generator real power on the parameters

of the power system stabilizer

It may be noted that the equivalent reactance, Xe=

0.4 p.u. is considered for all the above operating conditions.

Figure 5 shows Error graph of neural network

model. Predefined error was determined 0.0001 that neural

network model reached to this error after 1777 epochs. The

simulation results of this part are shown in fig 6, 7 and 8. AS

it seen, the ST-ANNPSS response has less settling time and

Fig 8 Dynamic responses for
in the third operating point

ure : ,ω  δ

Figure 9 : Effect of changing generator real power on K1
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In figure 15 effect of changing active power of

generator on rotor angle is depicted. As seen, by increasing

of active power, the rotor angle increased significantly and

Figure 10 : Effect of changing generator real power on K3
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Figure 11 : Effect of changing generator real power on K2

Figure 12 : Effect of changing generator real power
on K4
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Figure 13 : Effect of changing generator real power on K5
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Figure 14 : Effect of changing active power of generator on K6

Figure 15: Effect of changing generator real power on K6
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A systematic approach for designing a ST-
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