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ABSTRACT 

 As oceans get progressively more polluted and garbage patches are discovered across the globe, tracking the 

movement of waste across the oceans becomes increasingly important. Modeling this movement makes identifying ocean gyres 

(and possible garbage patches) easier and could serve as an educational tool to demonstrate the effects of discarding trash in 

the ocean. To create such a model, we represented ocean currents as a vector field, and the fourth-order Runge Kutta method 

is used along with three different interpolation methods as bilinear, biquadratic, and bicubic interpolation. Bicubic 

interpolation was chosen as the reference solution, and the error associated with bilinear and biquadratic interpolation was 

compared. Quantitative results show that there is no clear superiority of the biquadratic model over the bilinear model. 

Qualitative results show that the model performs as expected based on studies of ocean currents in the North Indian Ocean. 

This paper demonstrates how to implement such a model, a method for evaluation, and recommendations for further study. 
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 Our oceans have progressively become more and 

more polluted with plastics, and much of that plastic 

comes from rivers. (Ritchie H., 2021) Moreover, with the 

discovery of the Great Pacific garbage patch, the Indian 

Ocean garbage patch, and others across the oceans, ocean 

current analysis has shown that trash entering the oceans 

tends to be caught within the ocean gyres and remain at 

sea. Studies are also showing that much of the trash 

expelled by rivers wash up on beaches (Egger M., 2023). 

 While there exists a handful of studies to 

understand how currents affect the movement of plastics 

across the oceans, most focus on the development of 

theoretical models that track the motion of particles in a 

vector field. Part of the challenge comes from the fact 

that there is little ground truth available to validate any 

model that is developed. Nonetheless, as the research 

develops and further empirical evidence is gathered, the 

background work done to develop and evaluate these 

models will be valuable.  

 The purpose of this work is to create a model 

using numerical methods to track the movement of 

plastics across the oceans, with a focus on the North 

Indian Ocean. The fourth-order Runge Kutta model was 

used to determine the trajectory of a point within a vector 

field of ocean currents. Three interpolation methods – 

bilinear, biquadratic, and bicubic – were implemented 

and evaluated, and the results presented.  

DATASET AND REPRESENTATION 

 We decided to model the ocean currents as a 

two-dimensional vector field and plastics moving through 

the ocean as a particle’s trajectory through this field. The 

vector field is a two-dimensional array of vectors sampled 

at equally spaced points across the Earth’s surface.  

 We used data from NASA’s Ocean Surface 

Current Analyses Real-time (OSCAR) global surface 

current database. OSCAR data provides current velocities 

for the ocean’s mixed layer (also known as the surface 

layer). This topmost layer of the ocean is of almost 

uniform density and lies above the pycnocline (Figure 1). 

OSCAR data is derived from satellite measurements of 

sea surface heights, ocean winds, and sea surface 

temperatures, and the dataset is updated approximately 

every five days. For the work described in this paper, the 

dataset used was from January 1, 2023. 

 

Figure 1: Diagram of the ocean layers 
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 Four fields were extracted from the OSCAR 

dataset: u, v, latitude, longitude. The u and v fields 

represent the two components of the vector current: the 

zonal current component (east-west currents along the 

lines of latitude) and the meridional current component 

(north-south currents along the lines of longitude) 

respectively with units of meters per second. The latitude 

field is a set of Float64 values representing the latitudes 

from -80N to +80N divided into 480 values, with each 

value separated evenly by 0.333 degrees. The longitude 

field represents the longitudes from 20E to 420E divided 

into 1200 values, with each value similarly separated 

evenly by 0.333 degrees. Together, this data results in a 

grid of 480 x 1200 with each grid point associated with a 

latitude, longitude, and 〈u, v〉 vector. Each vector 

represents the surface currents across approximately 32 

square kilometers.  

 Instead of using latitudinal and longitudinal 

values to calculate the trajectory of a particle, the latitude 

and longitude values were mapped to a 2D array of       

index values with   values ranging from 1 to 480 and y 

values ranging from 1 to 1200. The latitude and longitude 

data were overlaid in such a way that       =       

represented a latitude of 80N and a longitude of 20E 

while       =            represented a latitude of -80N 

and a longitude of 420E. 

METHODS AND IMPLEMENTATION 

Runge Kutta Method 

 After consideration of various numerical 

methods to trace a particle’s path through a vector field, 

we chose the fourth order Runge Kutta algorithm. The 

fourth-order Runge Kutta algorithm is a commonly used 

predictor-corrector method and uses a weighted average 

of four nearby vectors to determine the next step in a 

particle’s path. 

 Given a starting point   , the first vector  ⃗   is 

the vector at point   . The point    is then calculated as 

one half of the step size along the vector   ⃗   from the 

point   . The second vector   ⃗   is the vector at   , and  

   is then calculated as one half the step size along the 

vector  ⃗   again from the point   . The third vector  ⃗   is 

the vector at   , and    is calculated as the step size along 

the vector  ⃗   from point   . Finally, the fourth vector  ⃗   

is the vector at point     The equations for each of these 

vectors are given below where      is the vector at the 

point    and    is a constant step size. 

 ⃗         

      
 

 
    ⃗   

 ⃗         

      
 

 
    ⃗   

 ⃗         

          ⃗   

 ⃗         

 The final position vector k is created as a 

weighted average of the four vectors   ,   ,   ,    

according to the following equation. 

 ⃗  
 

 
 ⃗   

 

 
 ⃗   

 

 
 ⃗   

 

 
 ⃗   

With the final position vector calculated, the next point in 

the trajectory is given by 

         ⃗  

This is depicted pictorially as shown in Figure 2. 

 

Figure 2: Diagram of weighted vectors in the RK4 

algorithm 

Bilinear Interpolation 

 Often, a vector field in    is described as the 

gradient of a function        so a vector can be 

determined at any point in the field. However, because 

ocean currents are represented by a sampling of points 

across a vector field, it is necessary to interpolate the 

vectors that lie between the discrete samples. To do so, 

we considered three methods to interpolate vectors 

between the discrete samples: bilinear interpolation, 

biquadratic interpolation, and bicubic interpolation. These 

methods are variations of linear, quadratic, and cubic 

interpolation applied to a 2D space.  

 Bilinear interpolation is the simplest of these 

three and is commonly used in computer graphics and 

image processing to estimate values between grid points 

or other applications where the dataset is relatively 

uniform. It involves determining the value of an unknown 

point based on the values of the 4 neighboring points.  
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 Assume a point   to be interpolated with 

location       lies within a rectilinear cell of four points 

(  ,   ), (  ,   ), (  ,   ), and (  ,   ) each of which is 

associated with a vector as shown in Figures 3 and 4.  

   

Figure 3: Visual representation to find percentage 

distance from closest corner (  ,   ) to   

 

Figure 4: Rectilinear cell of four vectors with calculate 

vector at point   

The vector  ⃗  at point   is calculated as follows: 

 ⃗  
    

     

 ⃗   
    

     

 ⃗   

where 

 ⃗   
    

     

 ⃗    
    

     

 ⃗    

 ⃗   
    

     

 ⃗    
    

     

 ⃗    

Biquadratic Interpolation 

 While bilinear interpolation can provide a 

suitable representation of the vector field, biquadratic 

interpolation provides a smoother curve between the 

discrete points. This technique involves fitting a smooth 

curve between data points using a piecewise-defined 

quadratic polynomial. Unlike bilinear interpolation, the 

biquadratic interpolation method takes nine data points 

surrounding a central point instead of four. This allows 

for a greater representation of the data as more data points 

are included when determining the interpolation. 

 With linear interpolation, one point is chosen on 

either side of the point to be interpolated. With quadratic 

interpolation, three points are considered. However, the 

odd number of points leaves two points on one side and 

one point on the other, and the interpolation would not be 

centered about the point to be interpolated.  

 To address this, we shifted the interpolation by 

half a unit. This was done by creating two virtual control 

points half way between the first and second points and 

the second and third points. The point to be interpolated 

is designed to be between these two virtual control points. 

The values for each of these virtual control points are 

determined by linearly interpolating between the two 

corresponding points. When applied to a 2D space, this 

results in 4 virtual control points as shown in Figure 5. 

 

Figure 5: Biquadratic grid of points used to 

interpolate the data 

 Virtual control points shown in blue and 

interpolated points shown in red. 

 With the linear interpolation included as 

described above, the general equation used for quadratic 

interpolation across three points   ,   , and    is given as 

follows. 

                   
     

 
   (   

     

 
)   (

     

 
     

     

 
)    

 where   and   are normalized to be between 0 

and 1 between the virtual control points.  

 When extended to biquadratic interpolation, the 

quadratic function is first interpolated three times along 

the x-axis as follows. 

                  

                  

                  

 Once the values for   ,   , and    are 

determined, the quadratic interpolation is performed once 

more along the y-axis to determine the value for   , the 

point to be interpolated.  
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Bicubic Interpolation 

 Bicubic provides an even higher degree of 

smoothness between grid points, using a cubic function to 

fit a curve between the discrete points. Like bilinear 

interpolation, bicubic interpolation uses an even number 

of points so the creation of virtual control points is not 

needed. 

 Bicubic interpolation works by taking a group of 

16 points in a 4 x 4 grid of data points surrounding the 

point to be interpolated. Like both of the other 

interpolation methods, the interpolation is first run across 

the x-axis to calculate the points   ,   ,   , and   , and 

then run once along the y-axis to determine the value at 

  . As earlier,   and   are normalized to be between 0 

and 1. This is illustrated in Figure 6. 

 

Figure 6: Grid of data points used for bicubic 

interpolation. Interpolated   coordinate points shown 

in red 

The equation for cubic interpolation across the x-axis is 

defined below.

                      ( 
 

 
   

 

 
   

 

 
   

 

 
  )    (   

 

 
       

 

 
  )      

 

 
   

 

 
        

 

 This equation is applied four times across the 

points along the x-axis to determine the values for points 

at           and   . 

                      

                     

                     

                     

 The value at    is finally determined through 

one more application of the equation for cubic 

interpolation, but this time across the four interpolated 

points           and    along the y-axis. 

                         

Implementation 

 With the ocean currents represented as a 2D 

vector field, a model was implemented in the Wolfram 

language using the fourth order Runge-Kutta algorithm 

and the three interpolation methods described above. 

Inputs to the model are the starting point, step size, and 

number of iterations. Each run of the model created three 

trajectories — one each for the linear, quadratic and cubic 

interpolation methods. For all runs, a step size of 0.5 was 

used with 800 iterations.  

 Because there is no known ground truth with 

which to evaluate the models, the bicubic interpolation 

was used as a reference by which to evaluate the linear 

and quadratic models as it represents the most 

mathematically accurate solution of the three. To 

calculate the error between the linear and quadratic 

trajectories with the cubic trajectory, the Euclidean 

distance   is first calculated between corresponding 

points along the two trajectories as follows: 

                            √       
  (     )

 
 

where P and Q are points in the 2D space. 

 The values for a given trajectory are then 

combined as the square root of the sum of squares. This is 

known as the lock-step Euclidean distance and is 

described as follows:  

                                      √∑         

 

   

 

 where M and N are two vectors of points in the 

2D space and   ranges from 1 to the number of elements 

in the vector. In our case, M corresponds to the trajectory 

associated with the bicubic model and N corresponds to 

the trajectory associated with either the bilinear or 

biquadratic model. This approach allows us to quickly 

compare the bilinear and biquadratic trajectories. 

 This process was repeated for four 5 x 5 grids of 

GPS coordinates in the North Indian Ocean the Arabian 

Sea, the Bay of Bengal, northeast of Seychelles and 

southwest of Sri Lanka as shown in Figure 7, and the total 

errors across the trajectories were compared. 

 In addition, 16 GPS coordinates were evaluated 

qualitatively by observing the trajectories. Eight of these 

were chosen along the coast of India to be near river 

outlets into the sea, and eight were spread across the Bay 

of Bengal and the Arabian Sea. The processing times for 

each of these runs was also recorded. 
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Figure 7: The four regions of 5 x 5 grids of 

coordinates on which the runs were tested 

RESULTS AND DISCUSSION 

 Figure 8 illustrates a graph of the total error 

associated with both the bilinear and biquadratic models 

when compared to bicubic for all of the points tested. For 

a given trajectory, the bilinear error is represented on the 

x-axis, and the biquadratic error is represented on the y-

axis. A determination of the line of best fit yields the line 

          and is also overlayed on the plot. Because 

the slope of the line is nearly one, points under the line 

generally indicate samples where the biquadratic model 

performed with less error than the bilinear model, and 

points above the line indicate the contrary. 

 As can be seen from the figure, the points appear 

to cluster around the line          , suggesting the 

biquadratic model performs similar in accuracy to the 

bilinear model, if not slightly better. Table 1 also shows 

the count of trajectories for each region where the bilinear 

error is greater than the biquadratic error and vice versa. 

The biquadratic model performs better in 57% of the 

trajectories. 

 

Figure 8: Bilinear and biquadratic error for each 

trajectory along with a best fit line 

 Table 2 shows the time taken to calculate several 

trajectories with each of the interpolation methods. The 

results are consistent across the runs, regardless of the 

starting points of the trajectories. Bilinear and biquadratic 

interpolation are similar in the absolute times taken with 

bilinear interpolation being slightly faster than 

biquadratic. However, bicubic interpolation results in 

approximately a 10x increase in computation time over 

both bilinear and biquadratic. 

Table 1: Comparison of bilinear and biquadratic 

error across trajectories by region 

Region 
Bilinear error > 

Biquadratic error 

Biquadratic error > 

Bilinear error 

I 9 16 

II 13 12 

III 12 13 

IV 9 16 

Table 2: Time taken in seconds to generate the trajectories for the bilinear, biquadratic, and bicubic methods 

Latitude Longitude Bilinear Biquadratic Bicubic 

19 

13 

15.4 

12.9 

9.95 

8.64 

11.36 

15.66 

20.08 

21.4 

13.9 

13.9 

13.9 

19 

14 

9 

72.4 

80.5 

73.7 

74.6 

76.2 

78.15 

79.85 

80.98 

86.77 

91.02 

84.1 

88.1 

92.1 

70 

70 

70 

0.578843  

0.566436  

0.573438  

0.570757  

0.574994  

0.58338  

0.566767  

0.572612  

0.563314  

0.562457  

0.580862 

0.580396 

0.582617 

0.583237 

0.581369 

0.581801 

0.612795 

0.593552 

0.607441 

0.613081 

0.600569 

0.602804 

0.60121 

0.599231 

0.609077 

0.593427 

0.609787 

0.620646 

0.619004 

0.629257 

0.612338 

0.615364 

5.88402 

5.88056 

5.83616 

5.87552 

5.8592 

5.93379 

5.84195 

5.88178 

5.92286 

5.86548 

5.90423 

5.99402 

5.95934 

5.87745 

5.89972 

5.94343 
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Bilinear Model Biquadratic Model Bicubic Model 

Starting Point: (12.5, 85) 

   

Starting Point: (14, 63) 

   

 

Figure 9: Trajectories associated with the 3 interpolation methods with a GPS starting point (13.9, 88.1) 

 

C
H

A
K

R
A

V
A

R
T

H
Y

: U
S

IN
G

 N
U

M
E

R
IC

A
L

 M
E

T
H

O
D

S
 T

O
 T

R
A

C
K

 O
C

E
A

N
 P

L
A

S
T

IC
S

 IN
 T

H
E

 N
O

R
T

H
 IN

D
IA

N
 O

C
E

A
N

 
 

3
4

                                                                                                                                                                                In
d

ia
n

 J
.S

c
i.R

e
s. 1

4
 (1

): 2
9

-3
6

, 2
0
2

3 
 



Bilinear Model Biquadratic Model Bicubic Model 

Starting Point: (-7, 56) 

   

Starting Point: (-7, 85) 

   

 

Figure 9: Trajectories associated with the 3 interpolation methods with a GPS starting point (13.9, 88.1) 
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 These results indicate there is no significant 

benefit in a model with biquadratic interpolation over 

bilinear interpolation for this application under the 

current conditions.  

 In addition to the quantitative evaluation above, 

the trajectories were evaluated visually. All trajectories 

are not shown here for conciseness, but Figure 9 shows 

the trajectories associated with the first GPS coordinate 

for each region. In most cases, the trajectories starting 

near the shore result in endpoints along a nearby 

coastline. This points to the hypothesis that most plastic 

entering the ocean from points along the Indian coastline 

result in beaching along the Indian coastline or in fewer 

cases along other countries in the North Indian Ocean (eg. 

Sri Lanka, Maldives) (van der Mheen  et al., 2020). 

 Trajectories originating further from land were 

taken to be at least 90 km from the nearest point on the 

Indian coastline. This ensured that no points in the first 

iteration of the cubic interpolation calculation would be 0. 

While this set produced more variation in the trajectories 

than the set of trajectories starting near land, all 

trajectories starting in the Bay of Bengal ended in the Bay 

of Bengal, while all trajectories starting in the Arabian 

Sea ended in the Arabian Sea. This again agrees with the 

hypothesis that most debris originating in the Northern 

Indian Ocean remains in the Northern Indian Ocean. 

CONCLUSION AND AVENUES FOR 

FURTHER STUDY 

 The aim of this paper is to explore the use of 

numerical methods to understand the movement of 

plastics in the ocean. With the ocean modeled as a vector 

field, the fourth order Runge-Kutta algorithm was used to 

track the movement of a particle across that vector field, 

with bilinear, biquadratic, and bicubic interpolation used 

to interpolate points between discrete samples. The 

computation times for each model were recorded, and 

with the bicubic model designated as the reference 

solution, the error was calculated for both the bilinear and 

biquadratic models. In addition, trajectories created by 

each of the models were assessed qualitatively.  

 Across a set of 100 trajectories taken from 

starting points in the Northern Indian Ocean, the error 

associated with the bilinear model appears to be similar to 

that of the biquadratic model, indicating there is no clear 

superiority of the biquadratic model as might have been 

expected for this scenario. The time taken to execute the 

biquadratic model is marginally longer than that of the 

bilinear model, so there also there is no clear advantage 

of one model over the other with regards to computation 

time. 

 There are numerous avenues for further study 

including variation of the step size and more granular 

ocean current data, as both of these could show more 

differentiation in performance between bilinear and 

biquadratic models.  
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