
Indian J.Sci.Res. 15 (1): 142-146, 2017 ISSN: 0976-2876 (Print)

 ISSN: 2250-0138 (Online)

1Corresponding author

PROFILING BASED REDUCE MEMORY PROVISIONING FOR IMPROVING THE

PERFORMANCE IN HADOOP

T. S. NISHA
a1
AND K. SATYANARAYAN REDDY

b

aDepartment of CSE, Cambridge Institute of Technology, VTU Belgaum, Bangalore-560036, India
bDepartment of ISE, Cambridge Institute of Technology, VTU Belgaum, Bangalore-560036, India

ABSTRACT

 Hadoop Map Reduce framework has become a manageable, scalable and fault tolerant framework for processing

big data. The number of Map and Reduce task run decides the performance of the big data computing. Usually the number

of Map is decided is based on the number of data blocks available for processing, but there is no mechanism to decide the

number of reduce jobs. Currently it is based on the user configuration. Like this many challenges exist in Hadoop and

Hadoop needs to be optimized. In this survey paper, we propose a profiling based technique to find the optimum number of

reduce slots and the amount of memory for reduce, so that when Hadoop is configured with these optimum settings, the job

is able to complete successfully.

KEYWORDS: Hadoop Map Reduce, Big Data, Data Blocks.

 Hadoop is an open source implementation of

Map Reduce framework for Big data processing. In the

Map phase, the input data, in the form of data blocks,

is processed by Map tasks to generate intermediate

data. Each Map task processes one data block. After

that, the intermediate data is handled by Reduce tasks

of Reduce phase to deliver the final results. Reduce

tasks bring the intermediate data chunks to memory to

process it. Despite the Map phase, where the number

of tasks is determined by the number of data blocks, in

Reduce phase the number of tasks can be determined

by user or cluster administrator. The ability to manage

intermediate data, as well as determination of amount

of Reduce tasks, significantly affects the performance.

If the memory operations can be managed the

performance of big data computing environment can

be increased.

 Most of previous works on Hadoop

optimization has considered only storage or network

regarding intermediate data or solely focused on ratio

between slots and disregarded slots internal

configuration. While saturation of storage IO

operations or network bandwidth can lead to

performance degradation of Reduce phase, the good

news is that the MapReduce application would not be

killed in such cases by the Hadoop framework and

continues its execution although slowly. However, in

case of out of memory error, the job is killed since the

Reduce phase needs to bring large portions of

intermediate data in to memory for processing. If there

is not enough space left in memory, the Reduce tasks

and consequently the Reduce phase will fail which

leads to job termination by Hadoop. This is a major

difference between shortages of memory vs. other

resources such as disk/network IO or CPU in

MapReduce applications and makes it a significant

challenge to conquer. Albeit similar to other resources

if the memory becomes the bottleneck, one will face

performance degradation even if the job is not killed.

 Out of memory is not the only reason for

failures of MapReduce jobs; there are also other factors

such as disk failure, out of disk, and socket timeouts

that might also lead to failure. But such factors are

induced by external effects example, by faults in case

of disk failure and network timeouts, or lack of enough

resources such as disk space. But the problem in

deciding the number of reduce is internal to the

operation of the application.

 To meet the goal of optimizing the execution

of Map Reduce applications in the presence of failures,

while keeping the impact on the job completion time to

the minimum, (D. Moise, T.-T.-L. Trieu, 2011) authors

relied on a fault-tolerant, concurrency optimized data

storage layer based on the BlobSeer data management

service. They tested their approach with 2 distributed

file systems: HDFS and their BlobSeer- based BSFS.

In (G. Ruan, H. Zhang, and B. Plale,2013) authors

analyzed the HPC platform. Their study examines two

types of applications, a 3D-time series caries lesion

assessment focusing on large scale medical image

dataset, and a HTRC word counting task concerning

large scale text analysis running on XSEDE resources

which results demonstrate significant performance

improvement in terms of storage space, data stage-in

time, and job execution time. In (W. Yu, Y. Wang, X.

Que, 2015) authors proposed a novel virtual shuffling

strategy to enable efficient data movement and reduce

I/O for MapReduce shuffling, thereby reducing power

consumption and conserving energy. Their

experimental results show that virtual shuffling

significantly speeds up data movement in MapReduce

NISHA AND REDDY: PROFILING BASED REDUCE MEMORY PROVISIONING FOR IMPROVING THE…

Indian J.Sci.Res. 15 (1): 142-146, 2017

and achieves faster job execution. In (Y. Chen, A.

Ganapathi, and R. H. Katz, 2010) authors developed a

decision algorithm that helps MapReduce users

identify when and where to use compression. This

framework would also facilitate detailed exploration of

several compression factors not examined in this work,

such as a range of data compressibility, different

compression codecs, resource contention between

compression and the compute function of maps and

reduces, to name a few (Adam Crume , Joe Buck ,

Carlos Maltzahn , Scott Brandt,2012) Authors

proposed SciHadoop a slightly modified version of

Hadoop. In Hadoop mappers send data to reducers in

the form of key/value pairs. Authors proved that with

preliminary designs of multiple lossless approaches to

compressing intermediate data, one of which results in

up to five orders of magnitude reduction the original

key/value ratio.

 In (Zhenhua Guo, Geoffrey Fox, Mo Zhou,

2012) authors investigate data locality in depth. They

build a mathematical model of scheduling in

MapReduce and theoretically analyze the impact on

data locality of configuration factors, such as the

numbers of nodes and tasks. Secondly, they found the

default Hadoop scheduling is non-optimal .In addition,

non-optimality of default Hadoop scheduling has been

discussed and an optimal scheduling algorithm based

on LSAP has been proposed to give the best data

locality. Three scenarios – single-cluster, cross cluster

and HPC-style setup, have been discussed and real

Hadoop experiments were conducted. In (Qi Zhang,

2015) author introduced PRISM, a fine-grained

resource-aware MapReduce scheduler that divides

tasks into phases, where each phase has a constant

resource usage profile and performs scheduling at the

phase level. Through experiments using a real

MapReduce cluster running a wide-range of

workloads, they show PRISM delivers up to 18%

improvement in resource utilization while allowing

jobs to complete up to 1.3× faster than current Hadoop

schedulers. In (M. Zaharia, A. Konwinski, A. D.

Joseph, R. H. Katz, 2008) authors analyzed the

problem of speculative execution in MapReduce. They

designed a simple, robust scheduling algorithm, LATE,

which uses estimated finish times to speculatively

execute the tasks that hurt the response times the most.

In (A. Verma, L. Cherkasova, and R. Campbell,2011)

authors introduces a novel framework and technique to

address this problem and to offer a new resource sizing

and provisioning service in MapReduce environments.

They validated the accuracy of models using a set of

realistic applications. The predicted completion times

of generated resource provisioning options are within

10% of the measured times in our 66-node Hadoop

cluster. In (B. Nicolae, D. Moise, G. Antoniu,2010)

authors substitute the original HDFS layer of Hadoop

with a new, concurrency-optimized data storage layer

based on the BlobSeer data management service.

Thereby, the efficiency of Hadoop is significantly

improved for data-intensive Map-Reduce applications.

This work demonstrates that it is possible to enhance it

by replacing the default Hadoop Distributed File

System (HDFS) layer by another layer, built along

different design principles introduced BlobSeer

system, which is specifically optimized data accessed

under heavy concurrency along with additional

features such as efficient concurrent appends toward

efficient, fine-grain access to massive, distributed,

concurrent writes at random offsets and versioning.

 In this paper, we analyze the challenges like

this which are caused due internal operations and

explore different solutions to solve them. We identify

the pros and cons of each solution and finally propose

a reduce memory optimization solution to execute the

job successfully.

 Our solution is based on the concept of linear

modeling based profiling. The job is first executed

with different size of data and the intermediate data

generated is found. Based on this a linear modeling is

done between the input data size and the intermediate

data size, based on this, the number of reduce memory

needed for a large input dataset is calculated prior and

the number of reduce is provisioned accordingly. By

this way, the number of reduce jobs and the reduce

memory is provisioned prior and the job is able

execute successfully with better CPU utilization.

 We implement the proposed solution and

measure the performance in terms of CPU Utilization

with the default .Hadoop implementation and prove

that our solution has better CPU utilization than default

Hadoop implementation.

PROPOSED SOLUTION

 The architecture of the proposed solution is

shown in Figure 1

 Profiler takes the Job jar file as input and test

run the jar file for various input size on the Hadoop

environment and measure the size of intermediate data

generated.

 Optimizer module takes the input file which

the Job jar wants to execute on as input and calculate

the optimum number of reduce slots and the reduce

NISHA AND REDDY: PROFILING BASED REDUCE MEMORY PROVISIONING FOR IMPROVING THE…

Indian J.Sci.Res. 15 (1): 142-146, 2017

memory that will be consumed and sets it on Hadoop

environment. So that when the job jar is executed for

the input file, it will execute in the optimum

configuration and execute successfully.

 The implementation steps are shown in Figure

2.

Figure 1: Architecture of the proposed solution

Figure 2: Implementation Steps of the Proposed

Solution

CLASS DIAGRAM

The class diagram are shown in Figure 3

RESULTS

 We implemented the proposed solution in

Hadoop and measured two parameters

1. Execution time

2. CPU Utilization

 By varying the input file size, we measured

these 2 parameters and compared it with Hadoop

without optimization and the result is shown in graph

as Figure 4 & 5.

 Figure 3: Class Diagram of the Proposed Solution

Figure 4: Execution Time

Figure 5: CPU Utilization

NISHA AND REDDY: PROFILING BASED REDUCE MEMORY PROVISIONING FOR IMPROVING THE…

Indian J.Sci.Res. 15 (1): 142-146, 2017

APPENDIX

The Summary of Survey Paper listed below

Paper Advantages Disadvantages

[1]
Able to handle Mapper failure and support

fault tolerance
Not scalable

[2] Job execution time is faster
Application specific only works well for mathematics and

scientific applications

[3]
Achieves speed up by using shuffling also

saves power consumption

In case of high volume of intermediate key values pairs the

overhead is very high for shuffling

[4]

Uses compression codes to compress

intermediate key value and optimizes

memory consumption

Workload characteristics must be known priori in this

approach.

[5]
Applied compression to reduce the volume

of key – value pair
Execution time over head due to decompression is high

[6] Achieves optimization based on locality Not scalable for multi cluster setup

[7]
By applying phase wise scheduling speed up

is achieved

The heuristics needed to split for phases is not well

defined

[8]
Applied speculation to speed up the

execution
Resource overhead is high

[9]
Resource are reserved and job execution is

started

The efficiency of system is better only after long duration

of profiling

CONCLUSION AND FUTURE

ENHANCEMENT

 We have implemented proposed Hadoop

reduce memory optimization based on profiling and

sizing. We executed the proposed solution for different

volume of input file and showed that proposed system

has reduced execution time when compared to non-

optimized Hadoop. Since the system is able to provide

dimension values well ahead of execution, the system

administrator can also scale up the system if sufficient

resources are available.

 In the base paper estimation of intermediate is

done based on one time profiling. But this is not valid

for some tasks where the number of intermediate

generated is different for different volume of data. To

solve this problem, linear modeling is done for

different volume of data and the intermediate size is

found for each input data volume. After finding it, least

square estimation is done to find the best fit for

estimation of intermediate. Using this kind of modeling

yielded best estimation of intermediate size.

REFERENCES

Moise D., Trieu T.-T.-L., Boug´e L. and Antoniu G.,

2011. “Optimizing intermediate data

management in map reduces computations,”

in Proceedings of the first international

workshop on cloud computing platforms, pp.

1–7. ACM.

Ruan G., Zhang H. and Plale B., 2013. “Exploiting

map reduces and data compression for data-

intensive applications,” in Proceedings of the

Conference on Extreme Science and

Engineering Discovery Environment:

Gateway to Discovery. pp. 1–8, ACM.

Yu W., Wang Y., Que X. and Xu C., 2015. “Virtual

shuffling for efficient data movement in map

reduce,” IEEE Transactions on Computers,

64(2):556–568.

Chen Y., Ganapathi A. and Katz R.H., 2010. “To

compress or not to compress-compute vs. io

tradeoffs for map reduce energy efficiency,”

in Proceedings of the first ACM SIGCOMM

workshop on Green networking. pp. 23–28,

ACM.

Adam C., Joe B., Carlos M. and Scott B., 2012.

Compressing Intermediate Keys between

Mappers and Reducers in SciHadoop,

Proceedings of the 2012 SC Companion:

High Performance Computing, Networking

Storage and Analysis, pp.7-

12. [doi>10.1109/SC.Companion.2012.12]

Zhenhua G., Geoffrey F. and Mo Z., 2012.

Investigation of Data Locality in MapReduce,

NISHA AND REDDY: PROFILING BASED REDUCE MEMORY PROVISIONING FOR IMPROVING THE…

Indian J.Sci.Res. 15 (1): 142-146, 2017

Proceedings of the 2012 12th IEEE/ACM

International Symposium on Cluster, Cloud

and Grid Computing (ccgrid 2012), pp. 419-

426. [doi>10.1109/CCGrid.2012.42].

Qi Z., 2015. “PRISM: Fine-Grained Resource-Aware

Scheduling for MapReduce”, pp.4-8, IEEE

Transactions on Cloud Computing.

Zaharia M., Konwinski A., Joseph A. D., Katz R. H.

and Stoica I., 2008. Improving map reduce

performance in heterogeneous environments.

In USENIX Symposium on Operating

Systems Design and Implementation (OSDI),

8:7-8.

Verma A., Cherkasova L. and Campbell R., 2011.

Resource Provisioning Framework for Map

Reduce Jobs with Performance Goals.

ACM/IFIP/USENIX Middleware, pp. 165–

186.

Nicolae B., Moise D., Antoniu G. and al. BlobSeer,

2010. Bringing high throughput under heavy

concurrency to Hadoop Map/Reduce

applications. In Procs of the 24th IPDPS

2010, In press.

Nisha T.S. and Reddy K.S., 2017. “A Survey On

Optimization in Hadoop Big data

Environment,” in IJRDT, 7(6).

