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ABSTRACT 

 Hadoop Map Reduce framework has become a manageable, scalable and fault tolerant framework for processing 

big data. The number of Map and Reduce task run decides the performance of the big data computing. Usually the number 

of Map is decided is based on the number of data blocks available for processing, but there is no mechanism to decide the 

number of reduce jobs. Currently it is based on the user configuration. Like this many challenges exist in Hadoop and 

Hadoop needs to be optimized. In this survey paper, we propose a profiling based technique to find the optimum number of 

reduce slots and the amount of memory for reduce, so that when Hadoop is configured with these optimum settings, the job 

is able to complete successfully. 
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 Hadoop is an open source implementation of 

Map Reduce framework for Big data processing. In the 

Map phase, the input data, in the form of data blocks, 

is processed by Map tasks to generate intermediate 

data. Each Map task processes one data block. After 

that, the intermediate data is handled by Reduce tasks 

of Reduce phase to deliver the final results. Reduce 

tasks bring the intermediate data chunks to memory to 

process it. Despite the Map phase, where the number 

of tasks is determined by the number of data blocks, in 

Reduce phase the number of tasks can be determined 

by user or cluster administrator. The ability to manage 

intermediate data, as well as determination of amount 

of Reduce tasks, significantly affects the performance.  

If the memory operations can be managed the 

performance of big data computing environment can 

be increased. 

 Most of previous works on Hadoop 

optimization has considered only  storage or network 

regarding intermediate data or solely focused on ratio 

between slots and disregarded slots internal 

configuration. While saturation of storage IO 

operations or network bandwidth can lead to 

performance degradation of Reduce phase, the good 

news is that the MapReduce application would not be 

killed in such cases by the Hadoop framework and 

continues its execution although slowly. However, in 

case of out of memory error, the job is killed since the 

Reduce phase needs to bring large portions of 

intermediate data in to memory for processing. If there 

is not enough space left in memory, the Reduce tasks 

and consequently the Reduce phase will fail which 

leads to job termination by Hadoop. This is a major 

difference between shortages of memory vs. other 

resources such as disk/network IO or CPU in 

MapReduce applications and makes it a significant 

challenge to conquer. Albeit similar to other resources 

if the memory becomes the bottleneck, one will face 

performance degradation even if the job is not killed.  

 Out of memory is not the only reason for 

failures of MapReduce jobs; there are also other factors 

such as disk failure, out of disk, and socket timeouts 

that might also lead to failure. But such factors are 

induced by external effects example, by faults in case 

of disk failure and network timeouts, or lack of enough 

resources such as disk space. But the problem in 

deciding the number of reduce is internal to the 

operation of the application. 

 To meet the goal of optimizing the execution 

of Map Reduce applications in the presence of failures, 

while keeping the impact on the job completion time to 

the minimum, (D. Moise, T.-T.-L. Trieu, 2011) authors 

relied on a fault-tolerant, concurrency optimized data 

storage layer based on the BlobSeer data management 

service. They tested their approach with 2 distributed 

file systems: HDFS and their BlobSeer- based BSFS. 

In (G. Ruan, H. Zhang, and B. Plale,2013) authors 

analyzed the HPC platform. Their study examines two 

types of applications, a 3D-time series caries lesion 

assessment focusing on large scale medical image 

dataset, and a HTRC word counting task concerning 

large scale text analysis running on XSEDE resources 

which results demonstrate significant performance 

improvement in terms of storage space, data stage-in 

time, and job execution time. In (W. Yu, Y. Wang, X. 

Que, 2015) authors proposed a novel virtual shuffling 

strategy to enable efficient data movement and reduce 

I/O for MapReduce shuffling, thereby reducing power 

consumption and conserving energy. Their 

experimental results show that virtual shuffling 

significantly speeds up data movement in MapReduce 
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and achieves faster job execution. In (Y. Chen, A. 

Ganapathi, and R. H. Katz, 2010) authors developed a 

decision algorithm that helps MapReduce users 

identify when and where to use compression. This 

framework would also facilitate detailed exploration of 

several compression factors not examined in this work, 

such as a range of data compressibility, different 

compression codecs, resource contention between 

compression and the compute function of maps and 

reduces, to name a few (Adam Crume ,   Joe Buck ,   

Carlos   Maltzahn ,   Scott  Brandt,2012) Authors 

proposed SciHadoop a slightly modified version of 

Hadoop. In Hadoop mappers send data to reducers in 

the form of key/value pairs. Authors proved that with 

preliminary designs of multiple lossless approaches to 

compressing intermediate data, one of which results in 

up to five orders of magnitude reduction the original 

key/value ratio. 

 In (Zhenhua Guo, Geoffrey Fox, Mo Zhou, 

2012) authors investigate data locality in depth. They 

build a mathematical model of scheduling in 

MapReduce and theoretically analyze the impact on 

data locality of configuration factors, such as the 

numbers of nodes and tasks. Secondly, they found the 

default Hadoop scheduling is non-optimal .In addition, 

non-optimality of default Hadoop scheduling has been 

discussed and an optimal scheduling algorithm based 

on LSAP has been proposed to give the best data 

locality. Three scenarios – single-cluster, cross cluster 

and HPC-style setup, have been discussed and real 

Hadoop experiments were conducted. In (Qi Zhang, 

2015) author introduced PRISM, a fine-grained 

resource-aware MapReduce scheduler that divides 

tasks into phases, where each phase has a constant 

resource usage profile and performs scheduling at the 

phase level. Through experiments using a real 

MapReduce cluster running a wide-range of 

workloads, they show PRISM delivers up to 18% 

improvement in resource utilization while allowing 

jobs to complete up to 1.3× faster than current Hadoop 

schedulers. In (M. Zaharia, A. Konwinski, A. D. 

Joseph, R. H. Katz, 2008) authors analyzed the 

problem of speculative execution in MapReduce. They 

designed a simple, robust scheduling algorithm, LATE, 

which uses estimated finish times to speculatively 

execute the tasks that hurt the response times the most. 

In (A. Verma, L. Cherkasova, and R. Campbell,2011) 

authors introduces a novel framework and technique to 

address this problem and to offer a new resource sizing 

and provisioning service in MapReduce environments. 

They validated the accuracy of models using a set of 

realistic applications. The predicted completion times 

of generated resource provisioning options are within 

10% of the measured times in our 66-node Hadoop 

cluster. In (B. Nicolae, D. Moise, G. Antoniu,2010) 

authors substitute the original HDFS layer of Hadoop 

with a new, concurrency-optimized data storage layer 

based on the BlobSeer data management service. 

Thereby, the efficiency of Hadoop is   significantly 

improved for data-intensive Map-Reduce applications. 

This work demonstrates that it is possible to enhance it 

by replacing the default Hadoop Distributed File 

System (HDFS) layer by another layer, built along 

different design principles introduced BlobSeer 

system, which is specifically optimized data accessed 

under heavy concurrency along with additional 

features such as efficient concurrent appends toward 

efficient, fine-grain access to massive, distributed, 

concurrent writes at random offsets and versioning. 

 In this paper, we analyze the challenges like 

this which are caused due internal operations and 

explore different solutions to solve them. We identify 

the pros and cons of each solution and finally propose 

a reduce memory optimization solution to execute the 

job successfully.   

 Our solution is based on the concept of linear 

modeling based profiling. The job is first executed 

with different size of data and the intermediate data 

generated is found. Based on this a linear modeling is 

done between the input data size and the intermediate 

data size, based on this, the number of reduce memory 

needed for a large input dataset is calculated prior and 

the number of reduce is provisioned accordingly. By 

this way, the number of reduce jobs and the reduce 

memory is provisioned prior and the job is able 

execute successfully with better CPU utilization.  

 We implement the proposed solution and 

measure the performance in terms of CPU Utilization 

with the default .Hadoop implementation and prove 

that our solution has better CPU utilization than default 

Hadoop implementation. 

PROPOSED SOLUTION 

 The architecture of the proposed solution is 

shown in Figure 1 

 Profiler takes the Job jar file as input and test 

run the jar file for various input size on the Hadoop 

environment and measure the size of intermediate data 

generated. 

 Optimizer module takes the input file which 

the Job jar wants to execute on as input and calculate 

the optimum number of reduce slots and the reduce 
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memory that will be consumed and sets it on Hadoop 

environment. So that when the job jar is executed for 

the input file, it will execute in the optimum 

configuration and execute successfully. 

 The implementation steps are shown in Figure 

2. 

  

Figure 1: Architecture of the proposed solution 

  

Figure 2: Implementation Steps of the Proposed 

Solution 

CLASS DIAGRAM 

The class diagram are shown in Figure 3 

RESULTS 

 We implemented the proposed solution in 

Hadoop and measured two parameters 

1. Execution time 

2. CPU Utilization 

 By varying the input file size, we measured 

these 2 parameters and compared it with Hadoop 

without optimization and the result is shown in graph 

as Figure 4 & 5. 

 Figure 3: Class Diagram of the Proposed Solution 

 
Figure 4: Execution Time 

 
Figure 5: CPU Utilization 
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APPENDIX 

The Summary of Survey Paper listed below  

Paper Advantages Disadvantages 

[1] 
Able to handle Mapper failure and support 

fault tolerance 
Not scalable 

[2] Job execution time is faster 
Application specific only works well for mathematics and 

scientific applications 

[3] 
Achieves speed up by using shuffling also 

saves power consumption 

In case of high volume of intermediate key values pairs the 

overhead is very high for shuffling 

[4] 

Uses compression codes to compress 

intermediate key value and optimizes 

memory consumption 

Workload characteristics must be known priori in this 

approach.  

[5] 
Applied compression to reduce the volume 

of key – value pair 
Execution time over head due to decompression is high 

[6] Achieves optimization based on locality Not scalable for multi cluster setup 

[7] 
By applying phase wise scheduling speed up 

is achieved 

The heuristics needed to split for phases is not well 

defined 

[8] 
Applied speculation to speed up the 

execution 
Resource overhead is high 

[9] 
Resource are reserved and job execution is 

started 

The efficiency of system is better only after long duration 

of profiling 

  

CONCLUSION AND FUTURE 

ENHANCEMENT 

 We have implemented proposed Hadoop 

reduce memory optimization based on profiling and 

sizing. We executed the proposed solution for different 

volume of input file and showed that proposed system 

has reduced execution time when compared to non-

optimized Hadoop. Since the system is able to provide 

dimension values well ahead of execution, the system 

administrator can also scale up the system if sufficient 

resources are available.  

 In the base paper estimation of intermediate is 

done based on one time profiling. But this is not valid 

for some tasks where the number of intermediate 

generated is different for different volume of data. To 

solve this problem, linear modeling is done for 

different volume of data and the intermediate size is 

found for each input data volume. After finding it, least 

square estimation is done to find the best fit for 

estimation of intermediate. Using this kind of modeling 

yielded best estimation of intermediate size. 
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