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ABSTRACT  

 This paper concerns with the problem of determine the thermal stress distribution in bonded dissimilar elastic half 

planes containing a Griffith crack at the interface. The deformation in two half planes is due to the application of temperature 

to the faces of the crack. The analysis is carried out by a system of dual integral equation which are farther reduced to the 

solutions of Riemann Hilbert problem. An exact solution of these equations is obtained by using Fourier transforms and 

expressions for the quantities interest are obtained in closed form. The components of stress been calculated in the case of 

constant prescribed temperature.  

KEYWORDS: Riemann Hilbert Problems, Fourier Transforms, Griffith Cracks, Heat Conduction, Modulus of 

Elasticity, Singular Integral Equations 

 In recent years, a few problems have attempted 

for calculating thermal stresses in dissimilar media 

(Brown and Erdogan, 1968) (Bregman and Kabsir, 1974). 

Here we investigate the problem of the distribution of 

thermal stress in bonded dissimilar elastic half planes 

containing a Griffith crack at the interface. The problem 

is first reduced to a system of simultaneous dual integral 

equations which are further reduced to two singular 

integral equations. The solution of these equations is 

obtained by the method given in (Lowengrub and 

Sneddon, 1973), These solutions have been used to 

determine components of stress. The calculations have 

been done in case when constant temperature is 

prescribed on crack surface. It has been shown that the 

stress components have singularity of the form 
 

!"(#$% )

&'*

*+#
"(, log |""

-. 

-% 
|) at the rim of the crack.  

FORMULATION OF THE PROBLEM  

 We assume that two semi-infinite media with 

thermoelastic properties /0 1 2"3330145""20"(6 = 718)1  Where /0 

is the coefficient of thermal expansion, Kj is the 

coefficient of heat conduction 90"" is the modulus of 

rigidity and 2"333 = : ; <>0 1 >0  being poisson's ratio of the 

elastic material. Suffixes 1&2 and correspond to the 

upper and lower half planes bonded together along the x-

aixs except over the region |x| ? 71 @ = A . For a 

symmertical deformation of the solid, the displacement 

vector may be taken to have components [ux (x, y), uy (x, 

y)] and the non-vanishing components of stress tensor are 

B- 1 BC"DEF"B-C. 

 If we assume that the upper and lower faces of 

the crack are each subjected to a prescribed pressure p(x) 

and temperature T(x). We see that inside the crack area 

we have the conditions.  

BCC(G1 A
.) = BCC""(G1 A

%) = ;H(G)1 |G| ? 7        (2.1) 

B-C(G1 A
.) = B-C""(G1 A

%) = ;H(G)1 |G| ? 7        (2.2) 

I(G1 A.) = I(G1 A%) = ;I(G)1 |G| ? 7        (2.3) 

 For the region of the interface not occupied by 

the crack, the following continuity conditions must be 

satisfied:  

J-(G1 A
.) = J-(G1 A

%) = |G| K 7          (2.4) 

JC(G1 A
%) = JC(G1 A

%) = |G| K 7  

B-C(G1 A
.) = B-C(G1 A

%) = |G| K 7          (2.5) 

BCC(G1 A
.) = BCC(G1 A

%) = |G| K 7  

I(G1 A.) = I(G1 A%) = |G| K 7 

2L
MN

MC
|@ = A. = 2O

MN

MC

3333333
|@ = A%|G| K 7         (2.6) 

 As the solution of the equations of elastic 

equilibrium we take the displacement field  
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 !(", #) =
$%&'*+-(.-/0-

+-(.-/1-)| |(!"Ω#)$| |!%; %&],!'*
+%-. /#(0#123#/#(0#14#)| |(!"Ω#)$| |!%; %&],!'* 

    (2.7) 

5!(6, 7) =
+%-. /#(4#12#/#(0#14#)| |(!"Ω#)$/|8|9%%%; %&:,!'*
+%-. /#(4#123</#(0>14>)| (!"Ω>)$/|8|9:%; %&:,!'*
    (2.8) 

?:(6, 7) =
-. [(Ω#(8)]

(#@A#)B#$/|8|9, &:],!'*
-.[(Ω>%(8)](#%A>)B>$/|8|9, &:],!C*       (2.9) 

D:!(6, 7) =
+%-.[1E#$/|8|9(2#/#[0#(F"2#)"4#(2#1F)1G%(0#14#)]| %&:,!'*
+%-.[1E#$/|8|9(2#/#[0>(F"2>)"4>(2>1F)"G%(0>14>)]| %&:,!C*
  (2.10) 

D!!(6, 7) =
+%-.[1E#$/|8|9(2>/#[(F"2#)"4#(2#1F)1G%(0#14#)]| |!|,| &:'*

+%-.[1E#$/|8|9(2>/#[4>(F"2>)"0>(2>1F)"G%(0>14>)]| |!|,|| &:],!C*
 (2.11) 

 In these equations denotes the operator defined 

by the equation 

H . [I(J, 7), J & 6] = F
K(GL) M N%(J, 7)O1| |! %PJ∞

1∞
    (2.12)  

 On applying the conditions (2.3) and (2.6) we 

have  

(ΩG(J)) = QG%(R S TGUQF%(R S TF)ΩG(J)      (2.13) 

and 

JH . V 23#Ω#( )
W#(F"X>)S

2>YYYYΩ>( )
W>(F"X>)Z , J% & 6] =0      (2.14) 

or 

(JH .ΩF(J), J% & 6) = \, 6 ^ R_ 
 Hence from condition (2,3) we get the following 

pair of dual integral equations 

H . ΩF(J), J% & 6 = `QF(R S TF)?(6), 6 a R 

 

H . [JΩG%(J), ], J% & 6 = \, 6 ^ R      (2.15)  

Taking 

JΩF%(J) = b c(d) eos(Jd) Pd,
F

*
 

and it is easily shown that  

c(d) =%`%Gf#(F"X#)L
g
ghM

:i(:)
j(h>1:>)

F
* P6     (2.16)  

 From equations (2.1) and (2.5) we see that D!! 

(x,0+)=D!! (x,0-)for al values of X and it is easily shown 

that this condition is equivalent to the equation  

kF(kG ` R)lmG `kG(kG S R)nGl
= kG(kF ` R)mF S kG(kF S R)nF  

Where  

l = pGUpF 
 Similarly we can show that the boundary 

conditions (2.2) and (2.5) are equivalent to the equation  

 

kF(kG S R)mGl `kF(kG ` R)nGl
= kG(kF S R)mF ` kG(kF ` R)nF  

 Solving these equations for A2 and B2 in terms 

of A1 and B1 we have 

kFlmG(J) = R
q (kFkG S R)mF(J) ` R

q (kFkG ` R)mF(J) 
kFlnG(J) = F

G (kFkG ` R)mF(J) ` F
G (kFkG S R)nF(J)

                                          (2.17) 

From which we deduce immediately that  

l(mF S nG) = `kG(mF S nF)_% 
 Now from equations (2.7) and (2.8) we see that 

the boundary conditions (2.4) are equivalent to the 

conditions  

H . V /#{0#( )10>( )"Ω#( )1Ω>( ),r:|r|:|tF
 /#{4#( )14>( )"Ω#( )1Ω>( ),r:|r|:|tFZ 

                (2.18) 

Respectively 

Now using (2.17) we may reduce these in turn to  

H . uJ1F{[kFl S F
G (kFkG S R)mF(J) S F

G (kFkG `
R)nG(J) S kFl(ΩF SΩG)}, 6] = \, |6| ^ R%%%%%% 
  

H . u|J|1F F
G (kFkG ` R)mF(J) S vkFl S F

Gw (kFkG S
R)](nF)(ƹ) ` kFl(ΩF SΩG)}, 6] = \, |6| ^ R%% 
                                                                    (2.19) 

And for |x|^ R, we get from (2.1) and (2.11) 

H . [%(kF ` R)%mF(kF S R)(J) S (kG ` R)nF(J), 6]
= kFpF1Fx(6), |6| a R 

 

H . [%u%yz~%J{(kF S R)%mF(J) S (kG ` R)nF(J), 6] =
\|6| a R                               

                                                                           (2.20) 
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On setting we have  

[ (!"# + 1
2 (!"!$ + 1)%"(&) + 1

2 (!"!$ ' 1)*"(&)
+ !"#(Ω" 'Ω$) = ,(&) 

 

"
$ (!"!$ ' 1)%"(&) + -!"# + "

$. (!"!$ + 1)*"(&) '
!"#/Ω"(&) +Ω$(&)0 = 3(&)      (2.21)  

A Simple calculation shows that 

!"(!$ + #)(1 + !"#)%"(&) = -!"# + "
$. (!"!" +

1),(&) ' "
$ (!"!$ ' 1)3(&) '

!"#Ω"(&) 4!"# "
$ !"!$5 + !"#Ω$(&) × (!"# + 1)                                

                                                                (2.22) 

!"(!$ + #)(1 + !"#)*"(&) = -!"# + "
$. (!"!$ +

1),(&) ' "
$ (!"!$ ' 1)3(&) ' !"#Ω"(&)[!"#!"!$] +

!"#Ω$(&) × (!"# + 1)                                         (2.23) 

 We reduce the equations (2.19) through (2.20) to 

the set of simultaneous dual integral equations 

6 7 [8 ,(&) + 93(&): ;] = <"(;): |;| > 1           (2.24)

  

6 7 [?@AB{9,(&) + C3(&): ;] = <$(;): |;| > 1 

      

6 7 [?&D",(&): ;] = E  |;| > 1            (2.25) 

 

6 7 [&D"3(&): ;] = E  |;| > 1 

Where  

  

C = (!" ' 1)# + (!$ ' 1)           (2.26) 

  

9 = (!$ + 1)# + (!$ ' 1) 

 and the functions f1(x) and f2(x) may be 

calculated from the prescribed function p(x) by means of 

the equations  

 !(") = #!(#! + $)(1 + #!$)%!&!'(") * 2#!$,
- [($ + #.)Ω!(/) + 1(1
+ #!$)Ω.(/)] 

 

 .(") = 2#!$, - [0{$ + #.)Ω!(/) * (#!$ + 1)Ω.(/)]
                                   (2.27)  

It should also be observed that  

3. =4.= 5(#. + $)(1 + #.$) 6 78  

Solution of the Simultaneous Dual Integral Equations 

 We shall assume that the pressure p(x) is an 

even function of x. In this case the equations (2.23) and 

(2.24) reduce to  

,9[4 :(/) + 3;(/)< " =  !(")< 7 > " > 1 

 

,?[3:(/) + 3;(/)< " =  !(")< 7 > " > 1              (3.1)

  

,?[/&!:(/)< " = 7< " @ 1 

 

,9[/&!;(/)< " = 7< " @ 1                (3.2)

  

and it is easily shown that 

 

,9[A:(/) + 3;(/)< "] =  !(")< 7 > " > 1 

 

,?[3:(/) + A;(/)< "] =  .(")< 7 > " > 1              (3.3) 

 

,?[:(/)< "] = 7< " @ 1 

 

,?[;(/)< "] = 7< " @ 1                (3.4) 

 We begin by solving that set simultaneous dual 

integral equations (3.3)-(3.4), get 

,9[;(/)< "] = BC< (")7 > 9 > 1
7DDDDD" @ 1 B   

    (3.5) 

,?[:(/)< "] = EC! < (")7 > 9 > 1
7<DDDDD" @ 1 E            (3.6) 

 As in Lowe grub and Sneddon (1973), it can 

easily be shown that  

,?[:(/)< "] = !
F G

H(I)JI
(K&I)

!
&!     

     

,9[;(/)< "] = * !
F G

L(I)JI
(K&I)

!
&!             (3.7) 

 Where r (t) and s(t) being even and odd 

extensions of r1-(t) and s1-(t) respectively to the interval 

(1-1,1). 

 With the help of these equations in simultaneous 

dual integral equations (3.3)-(3.4) reduce to the following 

singular integral equations.  
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 !(") # $
% &

'(*)
(+,*)

-
,- ./ = 0-1(")2 #3 < " < 3 

 

 4(") # $
5 &

6(*)
(+,*)

-
,- ./ = 071(")2 #3 < " < 3            (3.8) 

 Where 0-1(") and 071(") are respectively the even 

and odd extensions of 0-(") and 07(") to (-1,1). 

If we write  

 8(") = 4(") 9 :!(");              (3.9) 

Then the above two equations can be written as a single 

equation  

:  (")8(") # $
5 &

>(+)?*
(+,*)

-
,- = @(")2 #3 < " < 3      (3.10) 

Where  

@(") = 0-1(") 9 :071(";Aif we write  

 

B (C) = 3
DE:F

(/)./
(/ # G)

-

,-
 

and on using Plemelj formula [6] 

BH (") #B, (") = 8(") 

BH (") #B, (") = 3
E:F

8(/)
(/ # ")./;

H-

,-
 

 Then the integral (3.10) reduce to the following 

Riemann boundary value problem  

BH (") 9 I B, (") = :( 9J),-@(")2#3 < " < 3 

                (3.11) 

 Where the constant K defined by the equation 

K = J # LJ 9 L =
M 9 3
K- 9K7 N O 

 The solution to the Riemann boundary value 

problem posed by equation (3.11) is known to be  

(P) = Q(R)
75(%H$)&

S(*)?*
QT(*)(*,R)

-
,- 9 UV(P)           (3.12) 

 where C is an arbitary complex constant and 

X(z) is defined by the equation  

V(P) = (P 9 3),WXHYZ(P 9 3),WX,YZ            (3.13)

  

Where  [ = -
75 \]@I 

In case g(t) is a polynomial, it is known that  

& S(*)?*
QT(*)A(*,R)

-
,-  = 

75Y
-Hm  !(")

#(") $ %(&)'            (3.14) 

where 

L(z)=
*
+,

-./
0 1 ∞

2 !34567845679:
#345678(4567;")

+,
<            (3.15) 

Hence we have  

Λ(&)=
=

+> [?(&) $ %(@)AB(&) C DB(&)]           (3.16) 

Formula for Stress and Displacement Components  

From equation (2.9) we deduce immediately that  

Uy(x, 0+)-Uy(x, 0-)=AE*[|F|-1{B1-B2-W1-W2}, x] 

= K1G -1AE*[|F|-1N(F), x]             (4.1) 

 From (2.17), (2.21) on using (2.22), (3.5) and 

(3.16), it can easily be shown that 

uy(x, 0+)-Uy(x, 0-)=
*

HIJ K+
,L

*M+
2 NI(O)9O

(OP;QP) R
*
Q 0≤x≤1        (4.2) 

 where gives the difference of the normal 

component of displacement at the upper and lower 

surface of the crack. Similarly from (2.8) we have  

ux(x, 0+)-ux(x, 0-)=AE*[i F-1{A1-A2+W1-W2}, x]         (4.3) 

 From equation (2.17) and (2.22) we have 

ux(x, 0+)-ux(x, 0-)-
*

HIJ  [i F-1M(F), x]            (4.4) 

 From the continuity condition ux(x, 0+)=ux(x, 0-), 

x<1, we get the equation 

2 S*
< 1(x) dx=0     (4.5) 

 This condition determines the arbitrary constant 

in the general solution given by the equation (3.14). 

Now from (2.11), (2.12) we get  

syy(x, 0+)=-m1K1
-1E*[(K1-1)A1(F)+(K2+1)B1(F), x] 

     (4.6) 

sxy(x, 0+)=-m1K1
-1E*[i(K1+1)A1(F)+(K1-1)B1(F)}, x] 

     (4.7) 

 Substituting the values of A1, B1 from (2.21) and 

noting that 

syy(x, 0+)=-m1K1
-1(K2+G)(1+ 

K1G)E*[aM(F)+bN(F)+2K1G{( G+K2)W2(F) 

+(1+ K1G)W1(F)}Rx]                (4.8) 

 Also as in Lowegrub (1975) the continuity 

conditions are satisfied if   

Es[F-1N(F),x]=0, x>1 

Ec[F-1M(F),x]=0, x>1    (4.9) 
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 Substituting the values of M( ) and N( ) from 

(2.21) in the above equations and after interchanging the 

order of integration we have 

! "
#

$ 1(t) dt=0 

! %
#

$ 1(t) dt=0     (4.10) 

Hence we have  

! l
#

$
(t) dt=0     (4.11) 

 If we consider the physical important case in 

which the crack is opened by the application of a 

prescribed constant temperature T0 at its surface then  

T(x)=T0(x)=constant 

and from the equation (2.14) we have 

y(t)=
&' !("#$!)%&

' = *"(say). 

Hence, 

W1(+)=T1 sin +/+2
    (4.12) 

 We shall also assume that there is no external 

pressure applied to the surface of the crack, so that 

p(x)=0. Thus we have  

,"- (x)=h1.0'1
"/0
2 W

∞

3 1 (+) sin (+4) cos (+5) d+dt 

=h1T1(2/p)1/2x,     (4.13) 

and 

,0- (x)=-h2.0'1
"/0

6log|7 8 40| 9 4 log |:"#;"<; | 9 >"?@ (4.14) 

where 

h1=2K1A|[( A+K2)a1(1+η1)+(1+K1A)a2(1+η2)]/a1(1+η1)

     (4.15) 

and 

h2=2K1A|[( A+K2)a1(1+η1)+(1+K1A)a2(1+η2)]/a1(1+η1)

     (4.16) 

Thus 

g(x)=h1T1x(p/2)1/2-
B%!CD
(0p)!/D .4

0 9 ;D
E 1 9 >"  (4.17) 

 Now substituting the value of g(t) and X(t) in 

(3.14) and on using (3.16) we have  

s(x)=-(b2-a2)-1/2[(d1x3+d2x+d3) cos (wQ)-(C1x4+C2x2)+C3 

sin (wQ)].    (4.18) 

and 

r(x)=-(b2-a2)-1/2[(d1x3+d2x+d3) sin 

(wQ)+(C1x4+C2x2+C3) cos (wQ)].   (4.19) 

 whered1, d2, c1 and d3 are known constants while 

C2and C3are unknown to be determined. Since s(x) is 

even, we have C2=0. On using (4.10), we have 

C3=
<2 FGH!;I#HD;J KLM(wN)#GO!;P#OD;DJ QRK(SN)TH;!

&
2 QRK(wN)H;!
&

  

     (4.20) 

RESULTS AND DISCUSSION 

 In this paper we have find out displacement 

components and Thermal Stress in Bonded dissimilar 

Elastic Half Planes containing a Griffith Crack at the 

interface. 
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