
Indian J.Sci.Res. 14 (1): 27-37, 2017 ISSN: 0976-2876 (Print)

 ISSN: 2250-0138 (Online)

1Corresponding author

SYSTEMS DEVELOPMENT METHODOLOGIES: CONCEPTUAL STUDY

K. SARAVANAN
1

Assistant Professor, Sree Vidyanikethan Institute of Management, India

ABSTRACT

 Today, we are in the era of Mobile computing. There is an increasing trend in the use of software applications

through smart phones, laptops, PDA’s, tablets and other mobile devices. To fulfill this increasing demand in the market,

software applications are getting developed and upgraded in rocket speed. IT Companies are employing various system

development methodologies to develop quality software. Development methodologies and practices serve as one of the

critical components in Systems development. Over the years, several methodologies have evolved to cater to the varying

requirements of systems development and two styles of system development have emerged – the conventional closed-

source development and the progressive open-source development. Today, open source development is adopted as sup-

plement to closed source development. This paper has two objectives. The first objective is to review the literature re-

lated to system development methodologies that have evolved over the years. The second objective is to make distinc-

tion between the two styles of development, cite examples of companies which are successful in adopting open source

development.

KEYWORDS: Closed Source development, Open Source development, Systems development methodology,
Systems development style

 Systems development methodology (SDM)

is a standard process followed in an organization to

conduct all the steps necessary to analyze, design,

implement and maintain information systems (IS) [1].

It is highly beneficial for organizations to adopt a

systems development methodology to develop IS.

 Systems development life cycle (SDLC) is a

framework composed of distinct steps or phases in

the development of an Information System [5].

SDLC consists of five stages which include Planning,

Analysis, Design, Implementation and Maintenance

as shown in Figure 1.

Figure 1: Systems Development Life Cycle

 During ‘Planning’, the IS planned for devel-

opment is identified and prioritized. This is followed

by ‘Analysis’ where the requirements of the system to

be developed will be determined and structured by

Systems Analysts (SA). Once the requirements are

structured, the Inputs, Interfaces, databases and Out-

puts of the IS are ‘designed’. The baselined design

serves as input for ‘Implementation’ where full

fledged coding and testing takes place. Implementa-

tion also includes Documentation and Training. ‘Do-

cumentation’ on the system is prepared and the sys-

tem is installed for use. ‘Training’ on how to use the

system is provided to customers. This completes the

Systems development and the system is moved to

‘Maintenance’ phase where improvement to the exist-

ing system is undertaken.

REVIEW OF LITERATURE

 The evolution of Systems development me-

thodologies dates back to 1970 when W.W.Royce

introduced the traditional Waterfall model of systems

development [8]. Till that time, systems were devel-

oped adopting less disciplined approaches. Only for-

mal methods using mathematics and component

based concepts of software development were

adopted during those times.

 With system development being made as a

formalized process through the introduction of water-

fall model, many models started emerging either to

fix the drawbacks of waterfall model or to improve

the efficiency and quality of the overall systems de-

velopment process.

Design

Planning

Maintenance Analysis

Implementation

SARAVANAN: SYSTEMS DEVELOPMENT METHODOLOGIES: CONCEPTUAL STUDY

Indian J.Sci.Res. 14 (1): 27-37, 2017

 Figure 2 and table 1 provide a snapshot on

the various systems development methodologies that

have evolved along with the timelines. It can be ob-

served that till late 1990s, the paradigm was conven-

tional closed-source development and today we are

witnessing progressive open-source development

acting as supplement to closed-source development

Figure 2: Evolution of SDM

Table 1: SDM – Year and Contribution

SDM Year Contribution

Formal Methods 1967 Robert W.Floyd

Component based

Development

1968 Douglas Mcllroy

Waterfall Model 1970 W.W.Royce

Prototype Model 1970s Not Available

Joint Application

Design and Devel-

opment

1974 Dan Gielan,

Chuck Morris,

Tony Crawford

V-Model 1982 Ottobrunn

Spiral Model 1986 Barry Boehm

Aspect Oriented

Software Devel-

opment

1990s Gregor Kiczales

Rapid Application

Development

1991 James Martin

W-Model 1993 Paul Herzlich

Scrum 1993 Jeff Sutherland

and Ken Schwa-

ber

Concurrent Devel-

opment

1994 Davis and Sita-

ram

Dynamic Systems

Development

Method

1994 DSDM consor-

tium

Rational Unified

Process

1996 Philippe Kruch-

ten

Service Oriented 1996 Gartner

Architecture

Feature Driven

Development

1997 Jeff de Luca

Crystal Methodol-

ogy

1998 Alistair Cock-

burn

Open Source De-

velopment

1998 Eric S.Raymond

eXtreme Pro-

gramming

1999 Kent Beck

Adaptive Software

Development

1999 Jim Highsmith

Agile Unified

Process

2002 Scott Ambler

Test Driven De-

velopment

2003 Kent Beck

Behavior Driven

Development

2003 Dan North

Kanban Software

Development

2004 David Anderson

Disciplined Agile

Delivery

2009 Scott Ambler

and Mark Lines

Scrumban 2009 Corey Ladas

 In this paper, review of literature on SDM is

done in three parts based on the evolution of devel-

opment style. The first part discusses on SDM which

originated in the period 1970 to 1993. During this

period, the style was completely closed source devel-

opment. The second part focuses on discussing SDM

originated between 1994 till 2002. In this period,

open source style of development emerged and agile

methodologies became popular. The third part fo-

cuses on methodologies developed after 2003 where

open source development is adopted as supplement to

closed source development.

SDM from 1970 to 1993

 Till early 1990s, six development method-

ologies were adopted by organization Till Linear Se-

quential models originated, systems development was

less formalized. Concepts of. Formal methods and

component based development concepts were in use

but systems development became more formal after

the introduction of Waterfall model in 1970 by

W.W.Royce.

Linear Sequential Methods

 Linear Sequential methods of Systems de-

velopment advocate gathering the requirements well

in advance of the Systems life cycle and baseline the

same. Customers are not appreciated to change the

requirements and are not involved during Systems

Development. Once the System is developed, cus-

Till 1970s

• Formal Methods

• Component based develop-

ment concepts

1970 - 1993

1993 - 2000

2000s

• Linear Sequential Models

• Incremental Iterative Models

• OOAD

• Specialized Methods

• Agile Methods

• SOA

• Open Source development

• Recent Agile Methods

SARAVANAN: SYSTEMS DEVELOPMENT METHODOLOGIES: CONCEPTUAL STUDY

Indian J.Sci.Res. 14 (1): 27-37, 2017

tomers were allowed to use the system and requested

to provide feedback. These methods are highly useful

in larger and complex projects where the require-

ments are well known in advance and the team size is

more than hundred. The problem with the traditional

method is that as customers are not involved in the

life cycle, maintenance cost is very high. Three varia-

tions of linear sequential methods include Waterfall

Model, V-Model and W-Model.

Waterfall Model

 In waterfall model, each phase of develop-

ment should be completed for the next phase to begin

as shown in Figure 3. It follows a down-hill fashion

and each phase interacts with the next phase through

documentation. Proposed by W.W.Royce [1], this

model is useful in situations where requirements do

not change and work proceeds in a linear fashion.

V- Model

 V-Model is a variation of the Waterfall mod-

el aimed at improving the quality of system by giving

more focus to testing throughout the lifecycle. In this

model, each activity of development in the left side

has a corresponding testing activity in the right side

as shown in Figure 4.

 Coding activity in the left side has Unit Test-

ing (UT) activity performed in the right side. Low

level design (LLD) documents serve as input for

component Testing (CT). High level design (HLD) is

the input for Integration Testing (IT). System Testing

(ST) is performed by considering Systems Require-

ment Specifications (SRS) as input. Acceptance Test-

ing (AT) is performed by customers based on Busi-

ness Requirements Specification (BRS) document. V-

Model is a highly successful model and is widely

adopted in companies which have a dedicated testing

team

.

Figure 3: Waterfall Model

W- Model

 Developed by Paul Herzlich in 1983, W-

Model is an attempt to address the shortcomings of

V-Model. Unlike V-Model which gave more impor-

tance to dynamic testing, W-Model focuses both on

static testing as well as dynamic testing. Every devel-

opment activity is mirrored by a testing activity such

that static testing is focused during development and

dynamic testing is focused during testing phase of

systems development.

Incremental-Iterative Methods

 One of the problems with traditional me-

Analysis

Planning

Logical De-

sign

Physical De-

sign

Implementation

Maintenance

SARAVANAN: SYSTEMS DEVELOPMENT METHODOLOGIES: CONCEPTUAL STUDY

Indian J.Sci.Res. 14 (1): 27-37, 2017

thods is the lack of customer involvement throughout

the system life cycle which led to higher maintenance

cost. The other problem is requirements were not

allowed to be changed which led to customer dissa-

tisfaction. To overcome these problems, Incremental

– Iterative models were developed in which the sys-

tem was evolved or incremented over a period of

time with customer involvement. There are four vari-

ations of this methodology: Prototype Model, Spiral

Model, Rapid Application Development Model and

Concurrent development.

Figure 4: V- Model

Prototype Model

 This model is widely used when the custom-

ers are unclear of their requirements. The initial re-

quirements are gathered from the customers followed

by a quick design. A prototype is developed and

shown to the customer for evaluation. Once the cus-

tomer is satisfied, full-fledged systems development

will be done as shown in Figure 5.

 The prototype developed is of two types –

Throwaway and Evolutionary. If the prototype is de-

veloped only to get acceptance from customer and

discarded further, then it is known as ‘Throwaway

Prototype’. The Prototype which will be further de-

veloped as the actual system is referred as ‘Evolutio-

nary Prototype’.

Figure 5: Prototype Model

Spiral Model

 Spiral Model is a blend of traditional me-

thodology and prototype model. It comprises of four

quadrants as shown in Figure 6. The first quadrant

“Planning” is the phase where requirements are ga-

thered. This is followed by risk analysis where proto-

types are developed to get acceptance from custom-

ers. Once the prototype is accepted, ‘engineering and

evaluation phase’ continues where coding and testing

happens. Once the incremental version of system is

ready, it will be evaluated by customer. Next step

again starts with planning and follows same sequence

as explained above.

 Spiral model emphasizes more on risk anal-

ysis and is used in projects which are prone to high

risks like Defence, Aviation and Space related appli-

cations

Figure 6: Spiral Model

BRS

SRS

HLD

LLD

Coding

AT

ST

IT

CT

Unit Test

Code

Initial

Req.

Quick

Design

Prototype

Customer

Satisfied

Development Test-

ing

Review

and Upda-

tion

Mainten-

ance

Customer

Evaluation

Customer

Evaluation

Plan-

ning

Risk Analy-

sis

Engineering

and Evalua-

tion

SARAVANAN: SYSTEMS DEVELOPMENT METHODOLOGIES: CONCEPTUAL STUDY

Indian J.Sci.Res. 14 (1): 27-37, 2017

RAD Model

 Rapid Application Development Model de-

veloped in 1980s increases customer involvement,

encourages development of prototypes and extensive-

ly employs computer aided software engineering

(CASE) tools.

Figure 7: RAD Model

 It consists of 4 stages as shown in Figure 7.

The first stage ‘requirement planning’ is succeeded

by ‘design’ and ‘construction’ which occurs iterative-

ly till the user gets satisfied. ‘Cutover’ phase includes

handing over the system. RAD model is suitable for

applications which are to be developed very quickly.

Concurrent Development Model

 Concurrent Engineering model defines a

series of events that will trigger transitions from state

to state for each of the software engineering activi-

ties, actions or tasks [4]. At a specific time, analysis,

design, development and testing may be happening

and the deliverables may be at different states which

include ‘under development, under review, awaiting

changes’ and so on. Concurrent engineering

represents the overall picture of the current state of a

project. Fig 12 shows the state of one of the Systems

development activity.

Object Oriented Analysis and Design

 OOAD methodologies combine data and

processes into single entities called objects [1]. Ob-

jects correspond to real life entities and helps in im-

proving the security and quality of systems been de-

veloped. OOAD works on the principles of abstrac-

tion, encapsulation, inheritance and polymorphism

and advocates software reuse. OOAD is extensively

employed in application development using object

oriented programming languages like Java, C++. One

of the variations of OOAD is Rational Unified Proc-

ess (RUP) [1] which is explained below.

Figure 12: Concurrent Development

Rational Unified Process (RUP) Model

 RUP model comprises of four phases as

shown in Fig 8. During Inception, the scope of the

project is decided and requirements are gathered.

During the Elaboration phase, the requirements gath-

ered are analyzed, prioritized and the architecture is

developed. In the construction phase, coding and test-

ing will happen with the beta version of the project

deployed. This is followed by transition where user

training is given and client approval is obtained. Each

of the phases undergoes series of iterations till the

next phase is reached. During the analysis phase,

OOAD concepts are adopted which are further im-

plemented in the construction phase.

Specialized Methods

 Specialized models have narrow focus and are

not widely adopted in all development projects. They

adopt some of the characteristics of conventional mod-

els [5] but are applied to specific projects.

Aspect oriented Software Development

 AOSD is based around abstractions called

Under Develop-

None

Under Re-

Baseline

Done

Awaiting

Under Revi-

sion

Requirements

Planning

User De-

sign

Construction

Cutov-

er

SARAVANAN: SYSTEMS DEVELOPMENT METHODOLOGIES: CONCEPTUAL STUDY

Indian J.Sci.Res. 14 (1): 27-37, 2017

aspects, which implement system functionality that

may be required at several different places in a pro-

gram [33]. ‘Aspects’ are cross-cutting functionality

that can be used in different parts of the application

and woven to core functionality as and when re-

quired. This method helps in reuse of aspects without

regard where the code is used. Figure 9 depicts the

cross-cutting functionality.

Figure 8: RUP Development

Figure 9: Aspect Oriented Development

Formal Methods

 Formal methods or Cleanroom approach

uses mathematical and statistical techniques to de-

velop quality software [5]. Each step in the develop-

ment employs precision of mathematics including

specification of requirements, designing and testing.

The ultimate result is improved reliability of the

software developed.

Component based Development

 Component based development focus on

reuse of existing components. This method employs

Commercial off the Shelf (COTS) software compo-

nents which are readily available with required func-

tionality and are suitable for integration with other

software.

 In component based development, initially,

the architecture of the system is made ready. This is

followed by searching for components in COTS. If

the component that matches the requirement is avail-

able, then integration issues are considered followed

by integration and testing of the entire system [4].

This method helps to improve productivity and re-

duce cycle time.

Joint Application Design and Development

 Joint application design was first developed

by Dan Gielan in 1974 and Joint application devel-

opment was introduced and popularized by Chuck

Morris and Tony Crawford in the late 1970s.

 JAD is a team oriented approach that fo-

cuses on involving customers to understand the need

of business and helps to develop a joint solution.

Instead of identifying the requirements from stake-

holders individually, JAD recommends facilitated

workshop and partnerships to develop systems.

 Though JAD is considered to be a develop-

ment methodology, it is formalized for only the

analysis and design phases of SDLC. In a typical

JAD life cycle, four participants - Executive Sponsor,

IT Representative, Scribe and user are involved.

Scribe is responsible for documentation and act as

facilitator to conduct JAD Sessions. JAD life cycle

include the following phases: Definition, Preparation,

Design and Finalization. Used effectively, JAD helps

to accelerate design, enhance quality and reduces

development cost.

SDM from 1993 to 2002

 From 1993 to 2002, three development

methodologies became popular and are being adopted

by companies till today. The methodologies are Ser-

vice Oriented Architecture, Agile Methodologies and

Open Source Development.

Service Oriented Architecture (SOA)

 Gartner defines ‘SOA as a software architec-

ture that starts with an interface definition and builds

the entire application topology as a topology of inter-

faces, interface implementations and interface calls

[9]’. It is an approach of building a System by bun-

dling various components providing generic func-

tions. SOA advocates the concept of software reuse

and promotes collaboration. It became very popular

with the introduction of Web Services by Microsoft.

The relationship between SOA and web services is

Resources

Tim

e

Incep-

tion

Elabora-

tion
Construc-

tion

Transition

Core Functionalities

Cross-Cutting

functionality

Cross-Cutting

functionality

SARAVANAN: SYSTEMS DEVELOPMENT METHODOLOGIES: CONCEPTUAL STUDY

Indian J.Sci.Res. 14 (1): 27-37, 2017

highly influential [10]. The potential benefits of SOA

include facilitation of rapid application development

through service assembly, high ROI due to reuse of

services and the ability to use legacy services through

communication networks [1].

Agile methods

 Agile is dynamic, content specific, aggres-

sively change embracing and growth oriented

[4].Agile manifesto held in 2001 defined the 12 prin-

ciples to be followed to achieve agility. Typically

agile development methodologies are adopted in or-

ganizations which are very dynamic and who build

Agile teams.

 An Agile team include the following charac-

teristics – Common focus, decision making and fuzzy

problem solving skills, competency and collaborative

work environment, each and every member giving

mutual respect and trust [4].

 Unlike traditional methods, Agile methods

appreciate changes, involves users throughout the

entire life cycle, divides the development into shorter

cycles of having 2-4 weeks, promotes the concept of

early delivery, advocate continuous integration to

improve quality and is the most highly adopted prac-

tice in industry. There are a number of variations

available in agile methods. Among them, some are

discussed here.

eXtreme Programming (XP)

 XP started in 1996 is one of the highly suc-

cessful agile development models. Extreme Pro-

gramming emphasizes teamwork. Managers, custom-

ers, and developers are all equal partners in a collabo-

rative team [11]. XP comprises of 4 phases as shown

in Figure 10.

 During the Planning phase, user stories are

built with customer involvement in such a way, each

story can be completed within 2 weeks. An Estimate

is made and a schedule is prepared to develop the

identified user stories and the team commits for de-

velopment.

This is followed by design phase where ‘Keep it

Simple’ philosophy is followed. XP encourages reuse

by adopting ‘Class – Responsibility Collaborator’

concepts and whenever a risk is seen, prototypes (i.e.,

‘spike solutions’) are built to get customer consensus.

‘Refactoring’ is another characteristic of XP.

 During coding, unit test scripts are devel-

oped first followed by code generation. XP advocates

‘Pair Programming’ where both developers and test-

ers work together in the same terminal. The devel-

oper concentrates on code design and tester concen-

trates on code standards. ‘Continuous integration’ is

another aspect of XP. At the end of the cycle, an in-

cremental version of software is released and ‘project

velocity’ is computed. Project Velocity helps to un-

derstand whether the estimation was optimal.

Figure 10: eXtreme Programming (XP)

Scrum

 Scrum, developed in 1993 is an agile meth-

odology employed for completing complex projects

[12]. In scrum, the requirements of the system to be

developed are termed as ‘product backlog’. From the

product backlog, requirements are prioritized for do-

ing a ‘Sprint’ – a 30 days scrum cycle which ulti-

mately delivers incremental software. The backlog of

sprint is referred as ‘Sprint backlog’. The require-

ments of sprint backlog is analyzed, designed, coded

and tested by a sprint team as a collaborative effort.

Every 24 hours, a scrum meeting coordinated by

Scrum Master with the participation of entire team

will happen as shown in Figure 11.

Figure 11: Scrum Framework

Plan- Design

Code Test

Working

Soft-

Product

Backlog

Sprint

Backlog

Sprint

Plan

24

Hours

Software

Increment

Scrum

Review

Scrum

Meeting

Sprint

Retrospect

SARAVANAN: SYSTEMS DEVELOPMENT METHODOLOGIES: CONCEPTUAL STUDY

Indian J.Sci.Res. 14 (1): 27-37, 2017

 The purpose of the Scrum Meeting is to un-

derstand the achievements made since last scrum

meeting, discuss and resolve any obstacles for the

work to be accomplished and also get commitment of

deliverables before next scrum meeting. It is a col-

laborative exercise and is a proven successful model.

Adaptive Software Development (ASD)

 Adaptive Software development developed

by Highsmith comprises of three phases – speculate,

collaborate and learn as shown in Figure 12. During

Speculation, project is initiated and basic require-

ments are defined [4]. Duringcollaboration, the re-

quirements are analyzed, designed, coded and tested

as a collaborative team and during learning, formal

technical reviews are done, focused groups get feed-

back from customers and post-mortem is done with

the intent of learning and improving. ASD empha-

sizes in the formulation of self organizing teams, in-

terpersonal collaboration, individual and team learn-

ing

Figure 12: Adaptive Software Development

Feature Driven Development (FDD)

 Feature driven development introduced in

1999 is a client-centric, architecture-centric, and

pragmatic software process [13].

Figure 13: Feature Driven Development

 In FDD, a ‘feature’ is a client valued func-

tion that can be implemented in two weeks or less’. It

consists of 5 collaborative framework processes as

shown in Figure 13. It emphasizes on project man-

agement and defines six milestones during the design

and implementation of a feature – design walk-

through, design, design inspection, code, and code

inspection, promote to build [4].

Dynamic System Development Methodology

 Developed in 1994, DSDM is an agile de-

velopment methodology and adopts Pareto Principle

such that 80% of project comes from 20% of re-

quirements [14]. Follows the concept of MoSCoW

for prioritizing requirements which stands for Must,

Should, Could, Won’t have requirements. DSDM

suggests an iterative software process and consists of

three iterative cycles and two life cycle activities. The

iterative activities include functional model iteration,

design and build iteration and Implementation. Life

cycle activities include Feasibility Study and Busi-

ness Study.

Crystal Methodologies

 Developed in mid-1990s by Alistair Cock-

burn, Crystal methods are referred as ‘lightweight

methodologies’ [14]. It focuses on people, interac-

tion, skills, community, talents and communications.

Processes are given secondary focus and people’s

interaction, talent are given a major focus.

 The methodology uses colors to denote the

‘weight’ of methodology to use. The different colors

in the family include Crystal Clear, Crystal Yellow,

Crystal Orange, Crystal Red, Crystal Maroon, Crystal

Diamond and Crystal Sapphire. The larger a project

gets, darker the color. The seven properties of crystal

methodology include frequent delivery, reflective

improvement, close communication, personal safety,

focus, easy access to expert users and technical envi-

ronment with case tools.

Open Source System Development

 It is the process in which the source code of

the developed software is publicly available for study,

change and improvement. This new style of devel-

opment became popular after Tim Berners-Lee made

his HTML code as the platform for the development

of World Wide Web. Typically an open source project

will be initiated by anyone who senses that there is a

need for Software to be developed. The initial code

is shared with public and it is followed by identifica-

tion of volunteers to chalk out the development plan.

Develop

overall

Plan

Build a

Features

List

Plan by

Feature

Develop

by Feature

Build

by

Fea-

Completed

Value-

added

function

Specula-

tion

Collabora-

tion
Learning Working

Software

SARAVANAN: SYSTEMS DEVELOPMENT METHODOLOGIES: CONCEPTUAL STUDY

Indian J.Sci.Res. 14 (1): 27-37, 2017

Full-Fledged code development, review, code docu-

mentation, testing and code commitment is then

made. The software is released and enters into con-

tinuous improvement.

 There are different types of open source

development projects. In Garden variety, standalone

software programs are developed for a specific pur-

pose. In Distribution project, the common source

program is distributed which can further be custom-

ized. In BSD model, the software development will

be done using one revision control system developed

by a single team. Standalone documentation projects

develop documentation for open source software

which has already been developed.

SDM from 2002 onwards

 From 2002 onwards, six development meth-

odologies became popular and are being adopted by

companies till today. These include Test Driven De-

velopment, Behavior Driven Development, Agile

Unified Process, Kanban Software Development,

Scrumban and Disciplined Agile Delivery.

Test Driven Development

 Introduced in 2003 by Keny Beck of eX-

treme programming, TDD advocates preparation of

tests before code is written. It emphasizes specifica-

tion more than validation which is the traditional fo-

cus of testing.

 It comprises of four steps – add a test, run

the test, make a little change in code to make the tests

pass and again run the test to ensure the tests passes

and again repeat the cycle. It focuses on refactoring -

tuning the code without any changes in the appear-

ance of the feature. In simple words, TDD is test first

development added with refactoring.

Behavior Driven Development

 Introduced in 2003 by Dan North, BDD is

an extension of Test Driven Development. North de-

fines BDD as “a second-generation, outside–in, pull-

based, multiple-stakeholder, multiple-scale, high-

automation, agile methodology”. It describes a cycle

of interactions with well-defined outputs, resulting in

the delivery of working, tested software that matters.

It works on the principle of getting the behavior of

software from stakeholders and uses ‘should’ to de-

scribe the behaviour and ‘ensure’ for assigning the

responsibility. It implements examples to describe the

behaviour and uses automation to provide quick

feedback and regression testing.

Agile Unified Process (AUP)

 Developed by Scott Ambler, AUP is a sim-

plified version of Rational Unified Process consisting

of four phases and seven disciplines. AUP advocates

small increments over ‘big bang’ approach by releas-

ing the system in portions into production as shown

in Figure 14.

Figure 14: Agile Unified Process

 The first production release may take twelve

months, the second release may take nine months and

subsequent releases take six months. Continuous

learning, experience makes the system to be devel-

oped quickly. In AUP, phases are large and disci-

plines are iterative and small. AUP works on the phi-

losophy of agility, simplicity, trust in staff, focused on

high value items and can be tailored as per the need.

AUP is not for everyone and should be chosen as per

the requirement of the development team.

Kanban Software Development

 Inspired by the Toyota Production System

and Lean manufacturing, Kanban software develop-

ment originated in 2004 is a visual process manage-

ment system that aids decision making concerning

what to produce? When to produce? and How much

to produce? [16]. It works on four key practices:

Visualize the workflow, Lead using a team approach,

reduce the batch size of your efforts, learn and im-

prove continuously. It uses a Kanban board for visu-

alization and control mechanism.

Scrumban

 Scrumban is a combination of Scrum meth-

odology and Kanban methodology as shown in Fig

15. Scrumban is a Scrum or Scrum-like process

which is being improved by Kanban [18]. Fundamen-

tally, Scrumban is a management framework that

emerges when teams employ Scrum as their chosen

way of working and use the Kanban Method as a lens

through which to view, understand and continuously

improve how they work

Development Release

Production Release

SARAVANAN: SYSTEMS DEVELOPMENT METHODOLOGIES: CONCEPTUAL STUDY

Indian J.Sci.Res. 14 (1): 27-37, 2017

Figure 20: Scrumban

Disciplined Agile Delivery (DAD)

 Scott Ambler started to work on DAD form

2009 and defines ‘Disciplined Agile Delivery (DAD)

process as a decision framework concerned with peo-

ple-first, learning-oriented hybrid agile approach to

IT solution delivery. It has a risk-value delivery life-

cycle, is goal-driven, is enterprise aware, and is scal-

able DAD is a process decision framework for Lean

Enterprises’. DAD is a hybrid approach of many de-

velopment methodologies like Scrum, Kanban, XP,

and RUP and so on. The focus of DAD is on delivery

consisting of three phases which results in an incre-

mental system. There are four versions of DAD

which includes Agile/basic version, Advanced/Lean

Version, Lean continuous delivery cycle and an Ex-

ploratory Lean startup cycle. The development team

can choose any of the versions and tailor it as per the

requirement. DAD advocates the philosophy of goal-

driven, enterprise aware team and scaling Agile.

OPEN-SOURCE DEVELOPMENT VS

CLOSED-SOURCE DEVELOPMENT

 Eric Steve Raymond in his work, “The Ca-

thedral & the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary” discusses on

the two styles of development – Conventional Closed

Source development and Progressive Open Source

development.

 Raymond compares closed source develop-

ment to the building of a cathedral where the entire

cathedral is built before the doors are open and he

says that the software is developed over the internet

through crowd sourcing in open source development,

 In Cathedral model, the source code is only

available during release of the software and it is

available with only exclusive group of developers

during development. But in case of Bazaar model, the

code is available to the public during development

itself.

 He emphasizes that software developed

through bazaar model is more reliable as the source

code is available for public testing and scrutiny. In

case of open source development, the source code is

available only for selected developers in the organi-

zation and so it may not be reliable to the extent of

the software developed using open source develop-

ment model.

 Raymond lists 19 lessons to create open

source software in his work.

 Open Source development involves volun-

teers and advocates collaborative work. The follow-

ing lists the characteristics of open source develop-

ment:

• The Source code is available for public to view,

modify and distribute

• The community of developers are volunteers and

are spread across the globe

• The focus is collaborative development of soft-

ware to improve the quality and reliability of

software

• Release early and release often

 The following table provides the difference

between Open Source development & Closed Source

Development:

Criteria Open Source

Development

Closed Source

Development

Software

Access

Freely available Using License

Software

Accep-

tance

In the growth phase

of acceptance

Accepted by all

Philosophy Improve Quality of

software through

collaborative open

community

Holding intellectual

copyrights within

the company

Motivation Contribution

to Society

Commercial

business

Evolution

of Style

1998 onwards 1960s onwards

Market

Focus

Wider Market Narrow Market

Business

Model

Revenue through

Support Services

Revenue through

software licenses

Source

code View

Can be Viewed Can be Viewed

Source

code

Modifica-

tion

Can be modified Trade secret, cannot

be modified by

public

Develop-

ment

community

Across globe Company specific

developers

Software Allowed Not Allowed

Scrum Kanban Scrumban

SARAVANAN: SYSTEMS DEVELOPMENT METHODOLOGIES: CONCEPTUAL STUDY

Indian J.Sci.Res. 14 (1): 27-37, 2017

Distribu-

tion

Vendor

Lock-in

No Yes

Bug fix Based on open

source community

As per SLA

Security Better than Closed

Source

Secured

Software

Stability

Stable Better than Open

Source

Customi-

zation

Highly Possible Possible with re-

quest to vendor

General

Preference

Small and Medium

Enterprises

Large Enterprises

Documen-

tation

Online documenta-

tion

Guides & Help files

along with software

Ease of use Good Good

Support Available through

online blogs

Tailored to the re-

quirement

Cost Free Expensive

Risk Moderate Less risk

 Today, Open source development is a proven

style of systems development. The Open source de-

velopment era started in 1989 when World Wide Web

was born and Tim Berners-Lee gave his HTML code

for development to the public. This was followed by

Linus Torvalds bringing this style of development to

the world through his Linux Operating system in

1991. Linux is widely accepted, stable and highly

popular open source operating system used world-

wide today.

 The next stage of recognition to open source

development came when Raymond inaugurated the

open source community in 1998 and Netscape Com-

munication Corporation announced starting its open

source Mozilla project. This is the period when

Apache group’s open source web server became the

market leader grabbing 65% of market share in 1999.

Even today, apache runs several open source projects

successfully catering to different aspects of software

development process.

 Another major breakthrough of open source

development is given by Google. Google’s open

source mobile operating system, Android started in

2003 is the market leader in mobile market. It is the

highly reliable and adopted mobile operating system

today. In the browser world, Google Chrome, the

open source browser, is the widely used browser and

is the market leader. Started in 2008, Chrome, the

open source development browser from Google has

reached the number one position out beating Micro-

soft’s Internet Explorer.

 Today, most of the companies have started

adopting open source development as a supplement

to their closed source development to improve the

reliability of the systems developed and to employ

crowd sourcing. They have also started adopting open

source software tools to aid in their development ef-

forts. With development community spread across the

globe, to grab a wider market and to improve col-

laborative systems development, open source devel-

opment style is embraced as a supplement to closed

source development.

CONCLUSION

 This paper gave an overview of all the sys-

tem development methodologies that have evolved

till date. It attempted to distinguish the two major

styles of development – closed source, open source

and also highlighted the characteristics of open

source development. The change in landscape from

closed source development to open source develop-

ment was discussed. It also cited several examples of

systems developed adopting open source develop-

ment style. Today open source development is being

adopted as supplement to closed source development

is also explained.

REFERENCES

Chen W.K., 1993. Linear Networks and Systems.

Belmont, Calif.: Wadsworth, pp. 123-135.

(Book style)

Poor H., 1986. “A Hypertext History of Multiuser

Dimensions,” MUD History, http://www.ccs

.neu.edu/home/pb/mud-history.html.

Coming D.S. and Staadt O.G., 2008. "Velocity-

Aligned Discrete Oriented Polytopes for

Dynamic Collision Detection," IEEE Trans.

Visualization and Computer Graphics,

14(1):1-12, doi:10.1109/TVCG.2007.70405.

(IEEE Transactions)

Williams J., 1993. “Narrow-Band Analyzer,” PhD dis-

sertation, Dept. of Electrical Eng., Harvard

Univ., Cambridge, Mass. (Thesis or disserta-

tion)

Hubert L. and Arabie P., 1985. “Comparing Parti-

tions,” J. Classification, 2(4):193-218.

Vidmar R.J.,1992. “On the Use of Atmospheric Plasmas

as Electromagnetic Reflectors,” IEEE Trans.

Plasma Science, 21(3):876-880, available at

http://www.halcyon.com/pub/ journals/ 21ps03-

vidmar.

