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ABSTRACT  

 We have to study of the fractional calculus relative to the certain spaces of testing functions and corresponding spaces 

of generalized functions. There is a lot of work has been carried out on the concept of fractional calculus in the framework of 

classical functions but as for as the study of the same concept concerned generalized functions is going on and like to mention 

few such asthe Riemann- Liouville fractional integral, the Weyl fractional integral and their generalizations Erdelyi-Kober 

fractional integrals on (0,) have been extended to generalized functions by Erdelyi(1972) and McBride(1979). On the other 

hand Jones(1970-72) has extended the operators H and Kwithin the framework of his generalized functions and Pathak 

(1990) has extended the same operators  to certain Schwartz distributions. The aim of this paper is to define the fractional 

integrals and the fractional derivatives on the generalized function space D’ following (1990). 

KEYWORDS: Fractional Calculus, Riemann- Liouville Fractional Integral, The Weyl Fractional Integral, Test 

Functions and Generalized Functions 

 Fractional calculus is the study of the derivatives 

and integrals of arbitrary order (real or complex). This 

concept is not new, it is as old as the ordinary calculus. 

Several mathematicians contributed to this subject over 

the years. But in the 20th century notable contributions 

have been made to both the theory and application of the 

fractional calculus Authors like Liouville, Riemann 

(1876), and Weylmade major contributions to the theory 

of fractional calculus. Theory of fractional calculus for 

the classical functions is now well known and it is 

systematically available in various standard texts such as 

(Oldham and Spainer, 1974), (Samko et al., 1993). Also 

along with the development of the theory of the 

generalized functions has been continued with 

contributions from Zemanian (1968), Gel’fand and 

Shilov(1967), McBride(1970-72), Erdelyie (1972), J.N. 

Pandey (1983), R.S. Pathak (1990, 1994)and others.  

PRELIMINARIES  

 Here we mainly discuss, in brief, few more 

interesting studies of fractional calculus along with used 

fractional operators, especially Riemann- Liouville 

fractional operator & The Weyl fractional operator and 

their certain generalizations in the framework of classical 

functions. Then we discuss some approaches of extension 

of fractional operators from classical functions to 

generalized functions through the introduction of 

McBride spaces & Schwartz spaces. 

 In 1890, first S.F Lacroix (1819) has generalized 

the formula  
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 where m and n are natural numbers, for 

derivatives of arbitrary order α as 

𝐷𝛼𝑧𝑚 =
𝛤(𝑚+1)

𝛤(𝑚−𝛼+1)
𝑧𝑚−𝛼 (1.1) 

 where the only restriction is that m-1,-2,….. 

Then he formally replace  with the fraction ½ and 

together with the fact that  )
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 We can now define the fractional derivative of 

zmf(z), where f(z) is analytic at z=0, by differentiating the 

power series for zmf(z) term by term. We get 
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 (1.2) 

 The series has the same circle of convergence as 

the power series for f(z) about z=0 

 Following Oldham (1974), The definition of 

fractional derivative given by Grunwald (1867) and later 

extended by Post (1930) is considered as most 

fundamental because it involved the fewest restrictions on 

the functions to which it applies and avoids explicit use of 

the notions of arbitrary derivative and integral. And it 

defined the derivative of arbitrary order  by the formula, 
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  ( 1 . 3 )  

 Note: For  as a non-negative integer (-) is 

infinite but the ratio (m-)/(-) is finite   

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Liouville.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Riemann.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Weyl.html
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 The most usual approach for generalization of 

ordinary derivative and integral to arbitrary order is 

known as Riemann-Liouville integral(s). 

The integral 

(𝐼𝛼𝑓)(𝑥) =
1

𝛤(𝛼)
∫
𝑥

0
(𝑥 − 𝑡)𝛼−1𝑓(𝑡) 𝑑𝑡 0<x<     (1.4) 

 which defined fractional integration, is called 

Riemann-Liouville fractional integral of order  for 

Re() > 0 and for suitable functions f. This integral can 

be motivated from the cauchy formula for a repeated 

integral.  
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 for n=1,2,… and 0<x<. Now it can be easily 

generalized to non integer values and gives (1.4). 

 the adjoint of the integral 𝐼𝛼 is an operator 𝐾𝛼 

defined by  

(𝐾𝛼𝑓)(𝑥) =
1

𝛤(𝛼)
∫
∞

𝑥
(𝑡 − 𝑥)𝛼−1𝑓(𝑡) 𝑑𝑡 0<x<   (1.5) 

 for Re() > 0. It also defined fractional integral 

is called Weyl fractional integral of order . 

 Fractional integrals (1.4) and (1.5) are defined 

for functions f(x) L1(0,), existing almost everywhere.  

 We now define fractional derivative of a 

locallyintegable functionf by means of the relation  
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 which is know as Riemann-Liouville fractional 

derivative of order  for Re() < 0. 

 Similarly the Weyl fractional derivative is 

defined by  
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 for Re() <     (1.7) 

Remarks  

(i) The definitions of fractional derivative given by (1.4) 

and (1.6) can be extended to Re()  0 as follow.  

))(())(( )( xfI
dx

d
xfI n

n

n
  

           (1.8) 

and ))(()1())(( )( xfK
dx

d
xfK n

n

n
n   

     (1.9) 

where n=( Re())+1 

(ii) If the lower integration limit in each of (1.4) and (1.6) 

is c then the operators Iand I-aredenoted by

xC I and 


xC I respectively. Similarly the operators Kand K-are 

replaced by 

xb K and


xb K if the upper limit in each of 

(1.5) and (1.7) is b<. Therefor if f(x) L1(a,b) the 

Riemann-Liouville and Weyl fractional integral operators 

are defined,  for Re()=0, by  
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 The operators given by (1.10) and (1.11) can be 

easily extended from the case of finite interval (a,b) to the 

case of half axis, given by  
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0<x<    (1.12) 

and to the whole (or entire) real axis, by  

11
( )( ) ( ) ( ) ,

( )

x

I f x x t f t dt 







 
   -<x<   (1.13) 
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 It is known that in the case of finite interval the 

operators given by (1.10) and (1.10) are defined on any 

space LP,1  p  and they have mapped LP, 1< p <, 

into Lq with q such that 1  q  p/(1-p) when p < 1 and 

1  q < when p  1. But for the case of the whole axis 

or half axis these operators are well defined on the space 

LP,1  p  1/ and they may map Lp into Lq for,1  p  

1/and q=p(1-p) only. 

 The fractional integral operators I and K 

defined by (1.13) and (1.14) have been studied by Erdelyi 

and Kober (1940). Their application can be found in the 

works of Sneddon (1966), Noble and Whiteman (1970). 

 The next method for motivating the concept of 

derivative of arbitrary order stems from consideration of 

Cauchy’s integral formula  
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 where c describes a closed contour surrounding 

the point z and enclosing a region of analyticity of f. 

When the positive integer n is replaced by a non-integer 

, then (w-z)--1no longer has a pole at w=z but a branch 

point. One is no longer free to deform the contour 

csurrounding z at will, Since the integral will depend on 

the location of the point at which c crosses the branch line 

for (w-z)--1. This point is chosen to be 0 and the branch 

line is to be the straight line joining 0 and z and 

continuing indefinitely in the quadaentRe(w)  0, Im(w) 

0. Then one simple defines, for  not a negative integer,  
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 where the contour c begins and ends at w=0 

enclosing z once in the positive sense.  

 The definition (1.15) is attributed by Osler 

(1970) to Nekrassov (1888). 

 It can be proved that this generalization of the 

ordinary derivative is equivalent to the Riemann-

Liouville derivative for the appropriate value of  in 

which both derivative are defined.  

 These approaches and others are discussed and 

compared by Osler (1970), by Ross (1966) and by many 

other authors.  

Generalizations of Riemann-Liouville and Weyl 

Fractional Integral operators  

 We now discuss briefly a generalization of 

Riemann-Liouville and Weyl fractional operators. 

 The operators (1.4) and (1.5) can be generalized 

in two ways.  

 Firstly, we may wish to integrate with respect to 

a continuously differentiable function  of a positive real 

variable, producing an expression such as- 
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 For  (x) = x ( real and > 0), the operator 


I  and 


K  defined for Re (α) >0 and suitable function 

f  by  
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 The case   = 1, of course, takes us back to (1.4) 

and (1.5) again. 

 Secondly, in a series of papers (2,3,4), A. 

Erdelyi and H. Kober investigated the properties of the 

following generalization of Riemann-Liouville and Weyl 

fractional integrals: 
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 These operators, if generalized, on the pattern of 

(2.1) and (2.2) can be put into the form  










x

x
dttfttx

x
xfI

0

11
,

)()(
)(

))(( 





   (2.5) 











x

x
dttftxt

x
xfK )()(

)(
))(( 11

,







  

(2.6) 

The case  = 2       i.e. 
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 has been extensively studied by I.N. Sneddon 

(1966) and he has been obtained the relations between 

(2.7), (2.8) and the modified operators of Hankel 

transform  
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 and then applied them to obtain solutions of 

dual, triple and quadruple integral equations. 

 L.G. Makarenio has introduced the two 

dimensional form of the operators (1.4) and (1.5) as  
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 The operators (2.5) and (2.6) have been further 

generalized by Roonie (1978)  as follows : 

For m=0,1,2,… and Re α  > 0, let  
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 where the empty sum which occurs if m=0 is 

defined to be zero; and also let )()( 1
,,

 xkxl mm  . 

If >0 and  ,   are complex numbers, defined 
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It is easily shown that  
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 Lowndes (1970) has introduced the generalized 

Erdelyi-Kober operators  
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and the generalized operators of Hankel transform 
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 and obtained some relations between them, 

which are then applied to solve a pair of dual integral 

equations. 

 Heywood and Rooney (1975) have written the 

Lowndes operators (2.16) and (2.17) in the form 
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 They have expressed the operator ),( kI  in 

terms of an auxiliary operators 0,,kR  by the equation 
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and Tk is translation operator defined by 
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The operators Kk(, )  is expressed by Heywood as  
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THE OKIKIOLU AND RIESZ FRACTIONAL 

INTEGRAL OPERATORS 

 The fractional integral operator H defined by  
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 was introduced by Okikiolu It reduces to Hilbert 

transform for =0. When 0 <<1, the above integral is 

absolutely convergent for a suitably restricted f(t). 

 A variant of H is the Riesz fractional integral 

operator K defined for 0 << 1, by  
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 Also the inversion formula for (3.1) and (3.2) are 

defined as;  

If fLP(-,  ) where 1< P<-1 and if g(x)= (Hf) (x) then  
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norm. 
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 point-wise almost every where and also in the 

LP- norm. 

Fractional Derivative with Respect to An Arbitrary 

Function 

 The concept of fractional derivative with respect 

to a function has been introduced by Erdelyi (1972), 

(1940). This concept is very useful and suggestive in 

applications Erdelyi first defined th-order differintegral 

of function f(z) with respect to the function zn by the 

formula 
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 Osler (1970) has extended Erdelyi’s work by 

defining a differintegral of a function f(z) with respect to 

an arbitrary function g(z) by considering the Riemann-

Liouville integral, as  
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 where a is chosen to give g(a)=0, i.e. a=g-1(0). 

 If we take g(w)= u g(z), we get 
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 In particular, if we set g(z)= z-a, then (5.2.12) 

reduces to the Riemann-Liouville integral 
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 It is noted that certain choices of g have been 

shown by Erdelyi and by Osler to lead to a number of 

formula of interest in classical analysis.  

Fractional Partial Derivative 

 Riesz (1949) and Bassan (1961) introduced the 

concept of fractional partial derivatives. The notation 

),(,
)(),( wzfD hzg


  means the fractional derivative of 

f(z,w) of order  with respect to h(w) holding z fixed, 

followed by the derivative of order  with respect to g(z) 

holding w fixed. This is defined by  
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 wheref(z,w), g(z) and h(w) are assumed to 

possess sufficient regularity to give the definition 

meaning. 

 When f(z,w)= u(z) v(z), then from (1.15) we 

have 
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Fractional Integrals of Generalized Functions   

The extension of fractional calculus from 

classical functions to generalized functions is getting 

more attention in present time. Mention must be made of 

the works of Zemanian (1968), Gel’fand and Shilov 

(1967), Erdelyie (1972), Pandey and Chaudhary (1983), 

Pathak (1990), Pathak and Upadhyay, (1994)and others.  

 It is very important to note that in such an 

extension of the fractional operators from classical 

functions to generalized functions, it is needed to create 

space of testing functions and corresponding space of 

generalized functions. In accordance, we describe below 

certain spaces of testing functions and corresponding 

spaces of generalized functions such as Schwartz spaces, 

McBride spaces.  

Schwartz’s Spaces DL
p and (DL

p)’ 

For  P1 DL
p defined by Schwartz (83) is given by 

DL
p (R) =

,......)}2,1,0(:{   kLDandC pk

x 
     (5.1.1) 

 The topology over DL
P is generated by the 

following seminorms 
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 DL
p is a complete countablymultinormed space 

and hence a Frechet space. A sequence }{ v DL
p 

converges to zero in DL
p  if

)(k

v  converges to zero in LP 

for each  vasNk ,0 . 

 Following Schwartz (1950-51), we denote the 

dual of DL
p,  P1 by (DL

p)΄ or DL
q , where   

1
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qP
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 D is dense in DL
p ( P1 ) and convergence 

in D implies convergence in DL
p and consequently by the 

restriction of f (DL
p)  ́to D is in D΄. it can be easily seen 

that  
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 Schwartz also defined the space 


B  as  
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 The space 



B  is equipped with the topology 

generalized by the seminorms 
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 It is obvious that the Schwartz space 



B  is a 

subspace of DL
∞ consisting of all functions which vanish 

at infinity together with each of their derivatives. The 

dual of 



B  is the space (DL
1)΄. 

 Further Pathak in 1990 has extensively studied 

the Riesz fractional operator K and Okikialu fractional 

integral operator H on the spaces DL
P and (DL

P)΄. 

McBride Spaces, FP, and FP,: 

 McBride (1975-76) introduced the spaces Fp,of 

testing functions and the corresponding spaces F’p,of 

generalized functions as follows: 

 For  P1 , 
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 And for P = ∞  
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 For  P1 , FP is equipped with the 

topology generated by seminorms 

P
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k
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d
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    (5.1.7) 

 For any complex number μ,  

 PP FxxF   )(:,  
    

    (5.1.8) 
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 The space Fp,denoted the set of all continuous 

linear functionals on FP, , equipped with the topology of 

point wise (weak) convergence. 

McBride (1977) has developed a theory of 

Erdelyi-kober operators on the spaces Fp,andF’p,. In 

(1978), he has studied the mapping properties of the 

Hankel transform of order v, 
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 on the spaces FP,andF’P,and obtained the 

relations between the Erdelyi-Kober operators and 

modified operator of the Hankel transform on F’P,. 

Further in (1979), he has applied his result to a solutions 

of a pair of dual integral equations of Titchmarsh type. 

 There are mainly two approaches to extend the 

study of fractional calculus to generalize function. The 

first is based on concept of convolution of distributions. 

We know that the operator given by (1.4) can be 

expressed as convolution. 
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 This approach is considered by Schwartz (1950-

51) and defined the fractional integer as convolution of 

the function 
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x , with the generalized function f.
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 Following  Schwartz (1950-51), we define the 

fractional integral of a generalized function Kf  , 

which is dual of test function space ),(0 RCK  as  

Kf
x
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 in the case where f is supported on the half axis x 

> 0. 

 The second, which is more common is based on 

using the adjoint operator.  

 We know that the adjoint of the operator 𝐼𝛼 is an 

operator 𝐾𝛼 and under certain conditions we have the 

formula for fractional integration by parts Love and 

Young (1938) 





00

)()()()()()( dxxKxfdxxxfI  

,          (5.1.13) 

That is  

   KffI ,,    

    (5.1.14) 

 The function f involving in (3.13), may  indeed 

be defined as the generalized function if Kαmaps 

continuously the space of test functions X into itself. 

When f and Iαf are considered to be generalized function 

on different spaces of test functions X and Y such that 

Xf   (the dual of the test function space X), 

YfI 
 (the dual of the test function space Y), then 

Imust  map continuously Y onto X. 

Fractional Integrals and Fractional Derivatives on the 

Space D 

 Now following the above approach, we can 

define the fractional integrals and fractional derivations 

on the generalized function space D΄. 

Fractional Integral  

For Df  and D , we have  

dxxxfIfI )())((,
0
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 , using 

 (1.4) 

dxdt
tx

x
tf
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dttKtf )())((
0




   ,  using  

 (1.5) 

 Kf ,    

 (5.2.1) 

Similarly    IffK ,,

 (5.2.2) 

Fractional Derivation 

For Df  and D , we have  

dxxxfIfI )()()(,
0

  



 , using 

(1.6) 

dxdt
tx

tf
x

x










  



0
1

0 )(

)(

)(

1
)(


  

dtdx
tx

x
tf

t 








 







1
0 )(

)(

)(

1
)(






,          using 

(1.7) 

dttKtf )())((
0




   

  Kf ,     

  (5.2.3) 

 Similarly we can define 

    IffK ,,  (5.2.4) 

ACKNOWLEDGEMENT 

 I would like to acknowledge the help received 

from Dr. T.N. Trivedi HOD. Deptt. of Mathematics, 

V.S.S.D College, Kanpur. 

 

 

REFERENCES 

Bassan M.A., 1961. Some Properties of Holmgren – 

Riesz Transforem, Ann. Scuola Norm. Sup. Pisa, 

15: 01-24. 

Erdelyi A., 1953. Higher Transcedental Functions, 

McGraw- Hill, New York, 2. 

Erdelyi A., 1972. Fractional integrals of generalized 

functions, J. Austral. Math. Soc. 14: 30-37. 

Erdelyl A. and Kober H., 1940. Some remarks on Hankel 

transform, Quart. J. Math. (Oxford),  11: 212. 

Gel’ Fand I.M. and Shilov G.E., 1967. Generalized 

Functions, Vol.  I (1964),  III (1967), Academic 

Press, New York. Vol. II (1958), Academic 

Press, Moscow.   

Grunwald A.K., 1867. Ueberbegrenzte Derivationen und 

deren Anwendung, Z. Math. Phys., 12: 41-480. 

Heywood P. and Rooney P.G., 1975. On the boundness 

on Lowndes operators. Jour. Lond. Math. Soc. 

(2), 10: 241-248. 

Jones D.S., 1970-72. A Modified Hilbert Transform, 

Proc. Roy. Soc. Edinburgh, 69(A): 45-76. 

Lacroix S.F., 1819. Traitė du Calcul Diffėrentiel et du 

Calcul Intėgral, 2nd edition., 3: 409-410. 

Love E.R. and Young L.C., 1938. On Fractional 

Integration by parts, proc. London Math. Soc. 

44(2): 1-28. 

Lowndes J.S., 1970. A generalization of Erdelyi-Kober 

operators. Proc. Edin. Math. Soc., 17: 139. 

McBride A.C., 1975. A Theory of Fractional 

Integration for Generalized Functions, SIAM J. 

Math. Anal., 6: 583.  

McBride A.C., 1976. A Note on Frechet Spaces F р, µ 

Proc. Roy. Soc. Edin., 77 A: 39. 

McBride A.C., 1977. A Theory of Fractional 

Integration for Generalized Functions II, Proc. 

Roy. Soc. Edin., 77 A: 335. 

McBride A.C., 1978. The Hankel transform of some 

classes of generalized functions and connections 

with Fractional Integration, Proc. Roy. Soc. 

Edin., 81A: 95. 

McBride A.C., 1979. Solution of dual integral 

equations of Titchmarsh type using generalized 

functions, Proc. Roy. Soc. Edin., 83A: 263. 

188                                                                                                                                                                                 Indian J.Sci.Res. 5(2) : 181-189, 2014 



PATHAK: A NOTE ON FRACTIONAL CALCULUS FOR GENERALIZED FUNCTIONS 

 

 

Makarenko L.G., 1975. A certain generalization of dual 

and triple integral equations. Vycisl. Prikl. Math. 

(Kiev), 25: 72-79. 

Nekrassov P.A., 1888. General Distribution, Math. Sb., 

14: 45–168. 

Noble B. and Whiteman J.R., 1970. The solution of dual 

cosine series by the use of orthogonality 

relations,  Proc.  Edin, Math. Soc. (2), 17: 47-51.   

Oldham K.B. and Spainer J., 1974. The Functional 

Calculus, Academic Press. 

Osler T.J., 1970. Leibnitz rules for Fractional Derivatives 

Generalized and an application to infinite series, 

SIAM J. Appl. Math., 18: 658 – 674. 

Pandey J.N. and Chaudhary M.A., 1983. The Hilbert 

transforms of generalized Functions and 

Applications, Canad. J. Math., 35(3): 478 – 495. 

Pathak R.S., 1990. Some Fractional Integrals of 

Generalized Functions, Prog. of Maths., 24 

(1&2): 129-141. 

Pathak R.S. and Upadhyay S.K., 1994. Wp- spaces and 

Fourier transforms Proc. Amer. Math.  Soc., 

121: 733-738. 

Post E.L., 1930. Generalized Differentiations, Trans. 

Amer. Math. Soc., 32: 723 – 781. 

Riemann B., 1876. Versucheiner Auffassung der 

Integration und Differentiation, Gesammelte 

Werke, ed. Publ. posthumously, pp. 331 – 344. 

Riesz M., 1949. L’ integral de Riemann – Liouville et le 

Problem de Cauchy, Acta Math. , 81: 1–233. 

Ross B., 1966. Fractional Calculus and its Applications, 

Springer – Verlog. 

Roonie P.G., 1978. On the ranges of certain fractional 

integrals-II, Appl. Anal., 8: 175-184. 

Samko S.G., Kilbas A.A. and Marichov O.I., 1993. 

Fractional Integrals and Derivatives, Gordom 

and Breach Science Publ. 

Schwartz L., 1950-1951. Theorie des distributions Vols. I 

and II, Hermann, Paris. 

Sneddon I.N., 1966.  Mixed Boundary Value 

Problems in Potential Theory, North-Holland 

Publishing Co. Amesterdam. 

Zemanian A.H., 1968. Generalized Integral 

Transformations, Inter Science Publishers, New 

York. 

 

Indian J.Sci.Res. 5(2) : 181-189, 2014                                                                                                                                                                                189 


	A NOTE ON FRACTIONAL CALCULUS FOR GENERALIZED FUNCTIONS
	Fractional Partial Derivative
	Fractional Integrals of Generalized Functions

	Fractional Integral
	Fractional Derivation


