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Abstract - This paper precisely proposes a link-analysis based technique allowing to discover relationships existing between 

nodes in a computer network or, more generally, a graph. More specifically, this work is based on a random-walk through 

the database defining a Markov chain having as many states as nodes in the computer network. Suppose, for instance, we 

are interested in analyzing the relationships between nodes in a computer network, a two-step procedure is developed in 

analyzing the relationships. First, a much smaller, reduced, Markov chain, only containing the nodes but preserves the main 

characteristics of the initial chain, is extracted by stochastic complementation. For extracting the reduced Markov by 

stochastic complementation, an efficient algorithm is proposed. Secondly, the reduced chain is analyzed by, for instance, 

projecting the states in the subspace spanned by the right eigenvectors of the transition matrix called the basic diffusion 

map, or by computing a kernel principal-component analysis on a diffusion-map kernel computed from the reduced graph 

and visualizing the results. Indeed, a valid graph kernel based on the diffusion-map distance, extending the basic diffusion 

map to directed graphs, is introduced. 

Keywords -  Diffusion Map , Stochastic complementation,  Feature Redundancy 

I. INTRODUCTION 

Wireless sensor networks (WSNs) are being used for 

diverse applications such as low cost area monitoring, 

environment monitoring, industrial and machine health 

monitoring, structural monitoring and military surveillance 

[1], [2]. In these applications, WSNs generate a large 

amount of data in the form of streams. In recent times, data 

mining techniques have been used to extract useful 

knowledge from WSN data [3], through discovering 

relationships among the sensor nodes which are known as 

behavioral patterns [4]. More recently, research has been 

focused to mine different types of behavioral patterns, e.g., 

sensor association rules [5], [6], [9] from stored (static) 

sensor data, context association rules [10] from sensor data 

stream, associated sensor patterns [7] and regularly 

frequent sensor patterns [8] from static as well as stream 

data. Traditional statistical, machine learning, pattern 

recognition, and data mining approaches  [28] usually 

assume a random sample of independent objects from a 

single relation. Many of these techniques have gone 

through the extraction of knowledge from data, almost 

always leading, in the end, to the classical double-entry 

tabular format, containing features for a sample of the 

population. These features are therefore used in order to 

learn from the sample, provided that it is representative of 

the population as a whole. However, real-world data 

coming from many fields such as World Wide Web, 

marketing, social networks, or biology [16] are often multi 

relational and interrelated. The work recently performed in 

statistical relational learning [22], aiming at working with 

such data sets, incorporates research topics, such as link 

analysis [36] web mining [1],[9], social network analysis 

[8], or graph mining[11]. All these research fields intend to 

find and exploit links between objects which could be of 

various types and involved in different kinds of 

relationships. On the other hand, when dealing with a 

starschema database , this two-step procedure reduces to 

multiple correspondence analysis. The proposed 

methodology therefore extends correspondence analysis to 

the analysis of a relational database. In short, this paper 

has three main contributions:A two-step procedure for 

analyzing weighted graphs or relational databases is 

proposed. .  

• It is shown that the suggested procedure extends 

correspondence analysis.  
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alizing the results. Indeed, a valid graph kernel based on the diffusion

directed graphs, is introduced. 
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• A kernel version of the diffusion map distance, 

applicable to directed graphs, is introduced. 

The paper is organized as follows:  

distance and its natural kernel on a graph

Section IV we some experimental resultsinvolving several 

data sets. 

II.THE DIFFUSION MAP DISTANCE AND 

ITSNATURAL KERNEL MATRIX

In this section, the basic diffusion map distance [24]

briefly reviewed and some of its theoreticaljustifications 

are detailed. Then, a natural kernel matrix isderived from 

the diffusion map distance, providing ameaningful 

similarity measure between nodes. 

A. The Diffusion Map Distance 

In our two-step procedure, a diffusion map 

projection,based on the so-called diffusion map distance, 

will beperformed after stochastic complementation. Now, 

sincethe original definition of the diffusion map distance 

dealsonly with undirected, aperiodic, Markov chains, it 

will firstbe assumed in Section 2 that the reduced Markov 

chain,obtained after stochastic complementation, is indeed 

undirected,aperiodic, and connected

thecorresponding random walk defines an irreducible 

reversibleMarkov chain. Notice, that 

the 

original adjacency matrix is irreducible and reversible; 

theseassumptions are only required for the reduced 

adjacencymatrix obtained after stochastic 

complementation.The original derivation of the diffusion 

map, introducedindependently by Nadler

and Latapy [22],[13], is deta

interpretationsof this mapping appeared in the literature 

For an application of the basicdiffusion map to 

dimensionality reduction, see [35].Since P is aperiodic, 

irreducible, and reversible, it is wellknown that all the 

eigenvalues of P are real and theeigenvectors are also real 

[7]. Moreover, allitseigenvalues 

eigenvalue 1 has multiplicityone [7]. With these 
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assumptions, Nadler et al. andPons and Latapy [42], [

[46], [47] proposed to use asdistance between states i and j

since, for a simple random walk on an undirected graph,the 

entries of the steady-state vector  are proportional (the

 sign) to the generalized degree of each node (the total 

ofthe elements of the corresponding row of the 

adjacencymatrix [28]). This distance, called the diffusion 

mapdistance, corresponds to the sum of the squared 

differencesbetween the probability distribution of being in 

any stateafter t transitions when starting (i.e., at

from twodifferent states, state i and state j. In other words, 

twonodes are similar when they diffuse through the 

network—and thus influence the network

way. This is anatural definition which quantifies the 

similarity betweentwo states based on the evolution of the 

states’ probabilitydistribution. Of course, when 

.Nadler et al. [22] showed that this 

distance measurehas a simple expression in terms of the 

right eigenvectorsof P: 

where  is component i of the 

eigenvector, , of P and  is its corresponding 

eigenvalue. Asusual, the  are ordered by decreasing 

modulus, so that thecontributions to the sum in (3) are 

decreasing with k. Onthe other hand, 

expressed in thespace spanned by the left eigenvectors of 

P, the , 

where  is the ith column of I, 

with the single 1 in position 

resulting mapping aims to represent each state 

dimensional euclidean space with coordinates

, as in (4). Dimensions 

areordered by decreasing modulus, 

assumptions, Nadler et al. andPons and Latapy [42], [43], 

[46], [47] proposed to use asdistance between states i and j 
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of the kth right 
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modulus, so that thecontributions to the sum in (3) are 
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expressed in thespace spanned by the left eigenvectors of 

 

with the single 1 in position i. The 

resulting mapping aims to represent each state i in an-

dimensional euclidean space with coordinates

, as in (4). Dimensions 

. This original 

mappingintroduced by Nadler and coauthors will be 

referred to asthe basic diffusion map in this paper, in 

contrast with thediffusion map kernel (KDM) that 

introduced inSectionII.The weighting factor, 

is necessary to obtain(3), since the

Instead, it can easily beshown that we have 

, which aims to redefinethe inner 

product as , where the metric ofthe 

space is  [7].Notice also that there is a close 

relationship betweenspectral clustering (the mapping 

provided by the normalizedLaplacian matrix; see, for 

instance, [15], [35]) andthe basic diffusion map. Indeed, a 

common embedding ofthe nodes consists of representing 

each node by thecoordinates of the smallest nontrivial 

eigenvectors (correspondingto the smallest eigenvalu

the normalizedLaplacian matrix, 

More precisely, if isthekth largest right eigenvector of 

the transition matrix Pand  is the 

eigenvector of thenormalizedLaplacian matrix

A subtle, still important, difference between this 

mappingand the one provided by the basic diffusion map 

concerns theorder in which the dimensions are sorted. 

Indeed, for the basicdiffusion map, the eigenvalues of the 

transition matrix P areordered by decreasing modulus 

value. For this spectralclustering m

are sorted by decreasingvalue (and not modulus), which 

can result in a differentrepresentation if P has large 

negative eigenvalues. Thisshows that the mappings 

provided by spectral clustering andby the basic diffusion 

map are closely related.Notice that at least three other 

justifications of thiseigenvector-based mapping appeared 

before in the literature,and are briefly reviewed here. It has 

been shownthat the entries of the subdominant right 

eigenvector of thetransition matrix P of an

irreducible, reversible,Markov chain can be interpreted as 

a relative distance to its“stationary distribution” . This 

distance may be regarded as an indicatorof the number of 

iterations required to reach this equilibriumposition, if the 

system starts in the state from whichthe distance is being 

measured. These quantities are onlyrelative, but they serve 

as a means of comparison among the

embedding can be obtained byminimizing the criterion
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 Here,  is the coordinate ofnode i on the axis and the 

vector z contains the . Theproblem sums up in finding 

the smallest nontrivialeigenvectorof 

same as the secondlargest eigenvector of 

once more similar to thebasic diffusion map.

this mapping has beenrediscovered and reinterpreted by 

Belkin and Niroyi [2], [3]in the context of nonlinear 

dimensionality reduction. Thelast justification of the basic 

diffusion map, introduced in[15], is based on the concept 

of two-way partitioning of agraph. Minimizing a 

normalized cut criterion whileimposing that the 

membership vector is centeredwithrespect to the metric D 

leads to exactly the same embeddingas in the previous 

interpretation. Moreover, some authors 

showed that applying a specific cut criteria to 

bipartitegraphs leads to simple correspondence analysis. 

More generally, these mappings are, of course, alsorelated 

to graph embedding and nonlinear 

dimensionalityreduction, which have been highly studied 

topics in recentyears, especially in the manifold learning 

community (see,i.e., [21], [30], [37] for recent surveys or 

developments).Experimental comparisons with popular 

nonlinear dimensionalityreduction techniques are 

presented in the following section. 

IV.   EXPERIMENT AND  ANALAY

A. Graph Reduction Influence and Embedding

Comparison 

The objective of this experiment is twofold. The first aim 

isto study the influence of stochastic complementation 

ongraph mapping. The second one is to compare five 

populardimensionality reduction methods, namely, the 

diffusionmap kernel PCA (KDM PCA or simply KDM), 

the LaplacianEigenmap (LE) [3], the Curvilinear 

Component Analysis(CCA) [14], Sammon’s nonlinear 

Mapping (SM) [25], andthe classical Multidimensional 

Scaling [6], [12], based ongeodesic distances (MDS). For 

CCA, SM, and MDS, thedistance matrix is given by the 

shortest path distancecomputed on the reduced graph 

whose weights are set tothe inverse of the entries of the 

adjacency matrix obtainedby stochastic complementation. 

Notice that the MDSmethod computed from the geodesic 

distance on a graphis also known as the ISOMAP method 

after [6]. Providedthat the resulting reduced Markov chain 

is usually dense,the time complexity of each algorithm is 

as follows: ForKDM PCA, LE, and MDS, the problem

is the coordinate ofnode i on the axis and the 
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, which is the 
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The objective of this experiment is twofold. The first aim 

isto study the influence of stochastic complementation 

ongraph mapping. The second one is to compare five 

methods, namely, the 

diffusionmap kernel PCA (KDM PCA or simply KDM), 

the LaplacianEigenmap (LE) [3], the Curvilinear 

Component Analysis(CCA) [14], Sammon’s nonlinear 

], andthe classical Multidimensional 

distances (MDS). For 

CCA, SM, and MDS, thedistance matrix is given by the 

shortest path distancecomputed on the reduced graph 

whose weights are set tothe inverse of the entries of the 

adjacency matrix obtainedby stochastic complementation. 

MDSmethod computed from the geodesic 

distance on a graphis also known as the ISOMAP method 

after [6]. Providedthat the resulting reduced Markov chain 

is usually dense,the time complexity of each algorithm is 

as follows: ForKDM PCA, LE, and MDS, the problem is 

to compute the dominant eigenvectors of a square matrix 

since the graphis mapped on a d-dimensional space, which 

is  

,wheren1 is the number of nodes of interest 

being displayedand  is the number of iterations of the 

power method. ForSM and CCA, the co

, where isthe number of iterations (these 

algorithms are iterative byrecorded.

computing the shortest pathdistances matrix takes

 Thus, each algorithmhas a time 

complexity between and

we address the task of classificationofunlabeled nodes in 

partially labeled graphs, that is,semisupervise

classification on a graph . Notice thatthe goal of this 

experiment is not to design a state-of

classifier; rather it is to study theperform

proposed method, in comparison withother embedding 

methods.Three graphs are investigated. The first graph 

isconstructed from the well-known Iris data set [4]. 

Theweight (affinity) between nodes representing samples 

isprovided by  

, where 

distance in the feature space and 

samplevariance. The classes are the three iris species. The 

secondgraph is extracted from the IMDb movie database 

[37]. The last graph,extracted from the CORA data set 

composed ofscientific papers from three topics. A citation 

graph is builtupon the data set, where two papers are 

linked if the firstpaper cites the second one. The tested 

graph contains1,410 nodes divided into three classes 

representing machinelearning research topics.For ea

these three graphs, extra nodes are added torepresent the 

class labels (called the class nodes). Each classnode is 

connected to the graph nodes of the correspondingclass. 

Moreover, in order to define cross

graph nodes are randomly split into training sets andtest 

sets (called the training nodes and the test 

nodes,respectively), the edges between the test nodes and 

the classnodes being removed. The graph is then reduced 

to the testnodes and to the class nodes by stochastic 

complementation(the training nodes are rejected in the S2 

subset, and thus,censored), and projected into a 2D space 

by applying one ofthe projection algorithms described 

before. Terms and topic nodes are displayed jointly.
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between the test nodes and the class nodes is 

accuratelyreconstructed in the reduced graph, these nodes 

from the testset should be projected close to the class node 

of theircorresponding class. Wereport the classification 

accuracy forseverallabeling rates, i.e., portions of 

unlabeled nodes whichconstitute the test set. The 

proportion of the test nodes variesbetween 50 percent of 

the graph nodes (twofold crossvalidation)to 10 percent 

(10-fold cross validation). Thismeans that the proportion 

of training nodes left apart(censored) by stochastic 

complementation increases withthe number of folds. The 

whole cross-validation procedure isrepeated 10 times (10 

runs) and the classification accuracyaveraged on these 10 

runs is reported, as well as the95 percent confidence 

interval.For classification, the assigned label of each test 

node issimply the label provided by the nearest class node, 

in termsofeuclidean distance in the 2D embedding space. 

This willpermit to assess if the class information is 

correctly preservedduring stochastic complementation and 

2D dimensionalityreduction. The parameter t of theKDM 

PCA is set to 5, in viewof our preliminary 

experiments.Figs. 1a, 1b, and 1c show the classification 

accuracy, aswell as the 95 percent confidence interval, 

obtained on thethree investigated graphs for different 

training/test setpartitioning (folds). The x-axis represents 

the number offolds, and thus, an increasing number of 

nodes left apart(censored) by stochastic complementation 

(from 0, 50, . . . , upto 90 percent). As a baseline, the 

whole original graph(corresponding to one single fold and 

referred to as 1-fold) isalso projected without removing 

any class link and withoutperforming a stochastic 

complementation; this situationrepresents the ideal case, 

since all the class information iskept. All the methods 

should obtain a good accuracy score inthis setting—this is 

indeed what is observed.First, we observe that, although 

obtaining very goodperformance when projecting the 

original graph (1-fold),CCA and SM perform poorly when 

the number of folds,and thus, the amount of censored 

nodes, increases. On theother hand, LE is quite unstable, 

performing poorly on theCORA data set. This means that 

stochastic complementationcombined with CCA, SM, or 

LE does not workproperly. On the contrary, the 

performance of KDM PCAand MDS remains fairly stable; 

for instance, the averagedecrease of performance of KDM 

PCA is around 10 percent,in comparison with the mapping 

of the original graph(from 1-fold to 2-fold—50 percent of 

the nodes arecensored), which remains reasonable. MDS 

offers a goodalternative to KDM PCA, showing 

competitive performance;however, it involves the 

computation of the all-pairsshortest path distance.These 

results are confirmed when displaying the mappings.Figs. 

1a, 1b, and 1c  show a mapping example ofthe test nodes, 

as well as the class nodes (the white markers)of the CORA 

graph, for the 10-fold cross-validation setting.Thus, only 

10 percent of the graph nodes are unlabeledandprojected 

after stochastic complementation of the 90 

percentremaining nodes. It can be observed that the 

LaplacianEigenmap managed toseparate the different 

classes, but mostly in terms of angularsimilarity. On the 

KDM PCA mapping (Fig. 8d), the classnodes are well-

located, at the center of the set of nodesbelonging to the 

class. On the other hand, the mappingsprovided by CCA 

and SM after stochastic complementationdo not accurately 

preserve the class information. 
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Figure 1(a): Classification accuracy obtained by the 

five compared projection methods for the Iris ((a), 

three classes), IMDb 

Figure 1 (b) : KDM PCA, or KDM), the 

LaplacianEigenmap ((e), LE), the Curvilinear 

Component Analysis 

(a): Classification accuracy obtained by the 

five compared projection methods for the Iris ((a), 

 

Figure 1 (b) : KDM PCA, or KDM), the 

LaplacianEigenmap ((e), LE), the Curvilinear 

 

Figure 1(c) : The mapping of 10 percent of the Cora 

graph (10-folds setting) obtained by the five projection 

methods 

V Conclusion

Let us now come back to our research questions. As a 

firstobservation, we can say that the two

procedure(stochastic complementation followed by a 

diffusion mapprojection) provides an embedding in a low

dimensionalsubspace from which useful 

be extracted.Indeed, the experiments show that highly 

related elementsare displayed close together while poorly 

related elementstend to be drawn far apart. This is quite 

similar tocorrespondence analysis to which the procedure 

is closelyrelated. Second, it seems that stochastic 

complementationreasonably preserves proximity 

information, when combinedwitha diffusion map (KDM 

PCA) or an ISOMAPprojection (MDS). For the diffusion 

map, this is normal,since both stochastic complementation 

and the diffusionmap distance are based on a Markov 

chain model—stochasticcomplementation is the natural 

technique allowingto censor states of a Markov chain. On 

the contrary,stochastic complementation should not be 

combined withaLaplacianEigenmap, a curvilinear 

component analysis, oraSammon nonlinear mapping

resulting mapping isnot accurate. Finally, the KDM PCA 

provides exactly thesame results as the basic diffusion map 

when t is large.However, when the parameter t is low, the 

resultingprojection tends to highlight the outlier nodes and 

tomagnify the relative differences between nodes. It 

istherefore recommended to display a whole range 

ofmappings for several different values of t.
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