DEGRADATION OF ERIOCHROME BLACK-T USING SnO₂ NANOPARTICLES

A. FATHIMA BEEVI^a, G. SREEKALA^b AND B. BEENA^{c1}

^{abc}Nanoscience Research Lab, Department of Chemistry, K.S.M.D.B. College, Sasthamcotta, Kollam, India

ABSTRACT

SnO₂ nanoparticles were synthesized by sonochemical method using Tin Tetrachloride and Ammonium Hydroxide as precursors. The prepared SnO₂ nanoparticles were characterized by PXRD, FTIR, UV-Vis and SEM- EDX. The dye degradation activity of the prepared sample was investigated by degradation of Eriochrome Black-T in aqueous medium under natural sunlight using UV-Vis spectrophotometer. The prepared SnO₂ nanoparticles are efficient for removing water soluble dyes.

KEYWORDS: SnO₂ Nanoparticles; Sonochemical Method; Degradation; Eriochrome Black-T

In recent decades, the semiconductor photocatalysts with high performances for water contaminant degradation have attracted great interest to solve environ mental issues. Among the various nanocrystalline materials, tin oxide is a versatile oxide having wider applications. Because of its strong physical and chemical interaction with adsorbed species, low operating temperature and strong thermal stability SnO₂ is widely used as a common 'n' type direct wide band gap semiconductor and photocatalyst. There are a variety of techniques that have been developed to prepare nano particles. They are sol-gel, solvothermal, microwave, chemical co-precipitation, hydrothermal and sonochemical methods. In the present work, the sonochemical method was employed to prepare tin oxide nanoparticles.

Eriochrome black-T is an azo dye used in textile industry. The complex chemical structure of Eriochrome black-T offers a greater resistance to photodegradation as well as certain chemical reagents, impairing the removal or reduction of its colour during the waste water treatment (Barka et al;2011).

MATERIALS AND METHODS Synthesis of SnO₂ nanoparticles

Typically, 50 mL of 0.4M Ammonium hydroxide solution was first added drop wise to 50 mL of 0.1M tin tetrachloride [(SnCl₄.5H₂O), 97%, Sigma- Aldrich] solution and kept under continuous stirring for 30 minutes. Then the solution was sonicated for 1 hour (230 volts, 50Hzs). Thus obtained precipitate was washed, dried and calcined at 300° C for 3hours.

Characterisation of SnO₂ Nanoparticles

The crystalline quality and grain size of the samples were evaluated using Powder X-ray diffraction (PXRD) measurements. The morphology of sample was examined using Scanning Electron Microscopy (SEM). Chemical nature of the synthesized SnO₂was analysed by FT-IR spectrum. The band gap and optical properties of the nanoparticles were studied using UV-Visible spectrum.

Preparation of Eriochrome Black-T Solution

The accurately weighed 0.01gm quantity of the Eriochrome black-T dye was dissolved in 100mL of distilled water.

Dye Degradation using Nano SnO₂

The photodegradation activity of nano SnO_2 is carried out by mixing 0.015gm of the sample and dye solution at 10minute intervals and recording the UV-.Visible absorption spectra.

RESULTS AND DISCUSSION

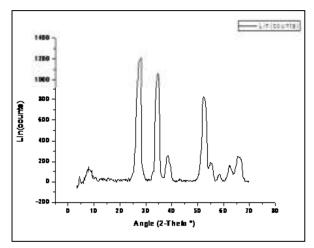


Figure 1: PXRD spectrum of SnO₂nanoparticles

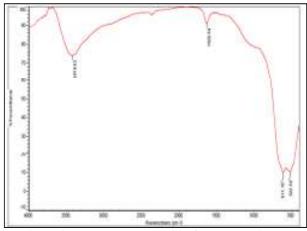


Figure 2: FT-IR spectrum of SnO₂ nanoparticles

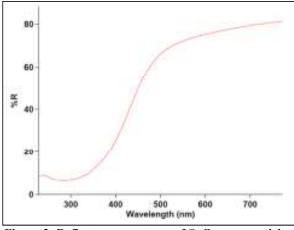


Figure 3: Reflectance spectrum of SnO₂ nanoparticles

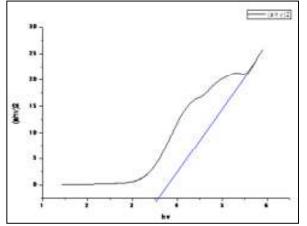


Figure 4: Tauc's plot of SnO₂ nanoparticles

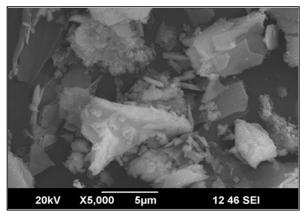


Figure 5: SEM image of SnO2 nanoparticles

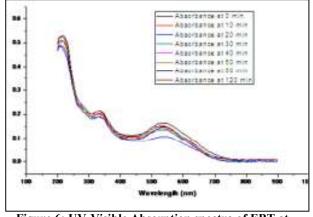


Figure 6: UV-Visible Absorption spectra of EBT at various time intervals

The X-ray diffraction is used to identify crystalline structure and particle size of the samples. X-ray diffraction patterns of our sample of SnO₂are shown in Figure.1. The diffraction peaks readily indexed to the tetragonal rutile phase of SnO₂ (JCPDS No.77-0450). From the crystallite size calculation, using Scherrer equation, t= $0.9\lambda/\beta \cos\theta$, the average size of prepared sample of SnO₂ is between 10-20 nm.

The FTIR transmission spectrum of the synthesised SnO2 is shown in Figure.2. The peaks at 3414.53cm⁻¹ and 1629.54cm⁻¹ were due to stretching and bending vibrations of water molecules or hydroxyl groups adsorbed at the surface of the tin oxide.(S.Y.Ho,et al 2009.) The bands at 611.18 cm⁻¹ and 522.58cm⁻¹refers to Sn-O stretching modes of Sn-O-Sn.(Farukh et al. 2010)

SEM image shows the flakes like morphology of the prepared sample in Figure 5.

From UV-Vis Spectra and Tauc's relation, $\alpha hv = A$ (hv- E_g)ⁿ, the band gap obtained is 3.6eV [Figure.3, Figure.4 and Figure.6]. The SnO₂ prepared by sonication

method is a good adsorbent for the removal of Eriochrome Black-T and points out the potential application of the material for waste water treatment.

ACKNOWLEDGEMENT

The authors wish to acknowledge CSIR, New Delhi for financial assistance in the form of JRF, STIC Cochin for instrumental analysis and the organizing committee, 27th Swadeshi Science Congress, Amrita Vishwa Vidyapeetham, Kollam.

REFERENCES

- Barka N., Abdennouri M.M., El Makhfouk M.M., 2011. Removal of Methylene Blue and Eriochrome Black-t from aqueous solutions by biosorption on Scolymushispanicus.L,: Kinetics, equilibrium and thermodynamics. Journal of the Taiwan Institute of Chemical Engineers, 42:320.
- Farukh, Heng B.T. and Adnan, 2010. Surfactant controlled aqueous synthesis of SnO₂ nanoparticles, Turk J. Chem., 84:537-550.
- Ho S.Y., Wong A.S.W. and Ho G.W., 2009. Controlled porosity of monodispersed Tin Oxide nanospheres. Crys. growth. Des., **9**(2):732-736.