
Indian J.Sci.Res. 17(2): 114-117, 2018 ISSN: 0976-2876 (Print)

 ISSN: 2250-0138(Online)

1Corresponding Author

DYNAMIC BUFFER RESIZINGTECHNIQUE FOR NETWORKS ON CHIP: FPGA

PERSPECTIVE

1
Gunasekhar Reddy.P

1
Software Engineer, Huawei Technologies, Bangalore

Abstract-NoCs provide much higher bandwidth than buses but have higher area and delay. Routers need buffers, routing

tables, a switching circuit and arbiters. So, they occupy more area than a bus based network. Also, direct bus connections

are faster than pipelined connections through one or more routers since these introduce a delay due to packing, routing,

switching and buffering. Application specific systems can benefit from heterogeneous NoCs providing high bandwidth in a

localized fashion where it is needed to eliminate bottlenecks and sized communication resources to reduce area utilization.

Networks-on-chip have a relative area and delay overhead compared to buses. These can be improved in application

specific systems where heterogeneous communication infrastructure provide high bandwidth in a localized fashion and

reduce underutilized resources. However, for general purpose architectures, design time techniques are not efficient. One

approach for improving area and/or performance of NoCs for general purpose systems is to consider dynamic adaptation of

the resources at runtime. In this paper, we analyze the different buffer resize approaches and FPGA implementation.

 Keywords - NoC, DSB, QoS, FIFO, VCB.

I. Introduction

NoCs provide much higher bandwidth than buses

but have higher area and delay. Routers need buffers,

routing tables, a switching circuit and arbiters. So, they

occupy more area than a bus based network. Also,

direct bus connections are faster than pipelined

connections through one or more routers since these

introduce a delay due to packing, routing, switching and

buffering.

Application specific systems can benefit from

heterogeneous NoCs providing high bandwidth in a

localized fashion where it is needed to eliminate

bottlenecks and sized communication resources to

reduce area utilization.

For general-purpose computing, the

communication architecture cannot be tailored for any

specific application. So, in general, designers consider

that regular NoC structures are the most adequate for

general-purpose computing where processing and data

communication are relatively equally distributed

among all processing units and traffic characteristics

cannot be predicted at design time. However, in general,

resources are used differently when executing different

applications on the same NoC. So, if some resources are

necessary and sufficient for one application, they may

be under or over utilized in the execution of another.

The efficiency of the interconnection network can

be improved if runtime changes are considered. A

system running a set of applications can benefit from

the runtime reconfiguration of the topology and of the

routers to improve performance, area and power

consumption considering a particular data

communication pattern.

Customizing the number of ports, the size of the

buffers, the switching technique, the routing algorithm

and the switch matrix are possible runtime changes that

can be considered in an dynamically adaptive NoC.

In this paper, we analyze some proposed dynamic

buffer resize techniques and more efficient buffer

resizes technique for FPGA. In section II, the related

work is described. In section III, we analyze the

previous techniques for buffer resize and In section IV

we propose a adaptive buffer resize technique for

FPGA. Finally, section V concludes the paper.

II. Related Work

Adaptability in NoCs was proposed in several

works considering several aspects of the NoC, including

topology, routing, switching, buffering and crossbar. A

few dynamically reconfigurable topologies for NoCs

have been proposed recently [1]. But most of the work

on dynamic adaptability of NoCs has concentrated on

the routers. Some works improve the performance of

routing algorithms using adaptive techniques use a

pseudo adaptive XY-routing that depends on traffic

conditions. In [5] the best path is determined at runtime

considering the distance to the destination and link

bandwidth usage. While adaptive algorithms are able to

achieve the best redistribution of traffic, they are harder

to implement, need virtual channels to avoid deadlocks,

by default do not guarantee ordered packet arrival and

depends on the ability to keep real- time information

about the network utilization, which is a complex task.

DYNAMIC BUFFER RESIZINGTECHNIQUE FOR NETWORKS ON CHIP: FPGA PERSPECTIVE

Indian J.Sci.Res. 17(2): 114-117, 2018

Generally, these routing algorithms rely only on

neighbor information, which restricts its efficacy.

Runtime switching was considered in [6] with a

hybrid switching mechanism (packet/circuit switching)

to guarantee quality of service for real-time

applications.

III. Analyses Of Previous Techniques For Buffer Resize

The efficiency of dynamic buffer resize depends

on the cost of buffers in terms of occupied resources

compared to that of other blocks of the router. This cost

relation depends on the target technology, that is,

buffers occupy more area relative to the other blocks

when implemented in standard-cell technology than

when implemented in FPGA. Since in this work we are

targeting the FPGA technology, we have analyzed the

efficiency of some state-of-the-art dynamic buffer

resize techniques for standard- cell technology when

implemented on FPGA.

In [3], a number of buffer blocks are dynamically

reassigned on-demand. The area overhead of the

adaptive router compared to that of the static router is

500 LUTs. With such number of LUTs it is possible to

have 12 FIFOs of depth 16, which reduces considerably

the efficiency of the solution.

In the buffer resize technique in [4] a channel may

borrow some buffer units from its neighbor. The

implementation uses extra multiplexers so that any

buffer unit can be assigned to a neighbor. The tests

show that the router with adaptive buffers of size 4

achieves the same performance of a static router with

buffers of size 9, with a decrease of 6% in the area. If

implemented in FPGA, the buffers have to be

implemented as registers, which are very expensive in

terms of resources given that an implementation of

buffers with size 4 or 9 are best implemented with

SRL16 primitives using the same number of LUTs.

Also, the solution is not scalable since the number of

extra logic increases more than linearly with the size of

the buffers. So, the solution it worthless for FPGA. In

[5] the same authors propose the same router that

adapts itself to provide appropriate buffer depth for

each channel to sustain the performance with minimum

power dissipation. This time to achieve the same

performance, the adaptive router consumes about 30%

less power but uses 55% more resources than the static

buffer.

In [7], a centralized buffer structure is proposed,

which dynamically allocates buffer resources based on

traffic requirements. Each buffer is divided into slots

implemented as registers. Slots are than linked by one

linked list. This centralized buffer management

approach dynamically allocates buffer slots to different

packets according to the traffic needs. The tested

network uses a central buffer with 60 slots(an average

of 12 slot per port). 60 slots with 8-bit each needs 480

bit registers. When implemented in an FPGA, it needs

480 LUTs. This number of LUTs is enough to implement

seven 8-bit FIFOs of depth 16 or five 8-bit FIFOs of

depth 64, more than the number of slots available

for a single port (60 slots).

Therefore, using this approach, we can achieve a

higher performance with static buffers when

implemented in FPGA.

The problem with these solutions is that they are

quite expensive in terms of resources when implemented

in an FPGA since they cannot use the SRL primitives.

Typically, implementing a FIFO with flip-flops uses 16×

more LUTs in a Virtex-4 than when implemented with

SRL primitives. Also, some solutions use many

multiplexers, and control, increasing even more the cost

of the solution in terms of area.

IV. Adaptive Buffer Resize

Buffer resizing can be used to improve latency or

minimize the area of a router. For heavy loaded

networks increasing the buffer size will decrease

blocking of packets since buffers can be emptied faster

because the following buffers in the path have higher

probability of not being full.

Figure 1. Average latency for different buffer sizes and

injection rate for uniform traffic.

To illustrate this behavior, we tested a 6 × 6 NoC

with uniform traffic and XY routing using buffers with

different sizes moving packets with 32 flits (see figure

1).

The average latency grows faster with increasing

injection rate for NoCs with smaller buffers. For

example, with 35 % network loading and buffers with

depth of 16 the average latency is about 128 cycles.

Increasing the buffers to 32 words will improve the

latency by about 33 % and increasing it to 64 words will

improve the latency by about 40 %. The main

DYNAMIC BUFFER RESIZINGTECHNIQUE FOR NETWORKS ON CHIP: FPGA PERSPECTIVE

Indian J.Sci.Res. 17(2): 114-117, 2018

disadvantage of this approach is the area overhead

associated with the buffers.

Therefore, in the customization process of the

router, the size of the FIFOs must be carefully chosen to

avoid using buffers deeper than what is needed to

achieve the system requirements while optimizing area

utilization. A simple experiment can be followed to

show this tradeoff. Using a NoC with the same

configuration, we injected a burst of 50 packets from

each processing element (with an injection rate of 35%),

considering 4-hotspot traffic and all buffers with a

depth of 16. In, the size of each buffer with an average

utilization higher than a given threshold value was

doubled. For each configuration, the area and average

latency were determined through simulation. The results

are as expected (see figure 2).

As can be observed from the figure, the latency is

reduced from 185 cycles down to 133 cycles (almost

30% improvement) by doubling the size of the buffers.

The latency decreases rapidly when the depth of most

utilized buffers are doubled. For example, if buffers

with an utilization higher than 40% are increased, the

latency is reduced about 20%.

Figure 2. Average latency for different buffer sizes and
injection rate for uniform traffic.

The techniques already proposed to dynamically

resize buffers achieve performance and/or power

improvements at the cost of some area overhead.

However, most of them target ASIC technology where

area utilized by the buffers is proportional to their size.

This is not the case with FPGA technology, where

buffers as FIFOs can be efficiently implemented using

the SRL primitives of LUTs.

The areas of the FIFOs are practically the same for

a set of sizes, as shown in table 1. This is because each

4-input LUT implements a 16-bits shift register. So, the

efficiency of the proposed techniques for buffer

resizing has to be reanalyzed considering these figure

V. Adaptive Buffer Resize Technique For FPGA

A buffer with depth-4 for 8-bit words implemented

with registers requires about 40 LUTs. So, unless we

use very small buffers (with a depth lower than 4), it is

better to implement FIFOs with SRL primitives. In our

proposal, a buffer unit will consist of FIFOs of depth 16,

32 or 64, whose implementation uses 39, 47 or 64 LUTs

for 8-bit data implemented with LUTs configured as

SRL. Other buffer size configurations can be also easily

implemented.For the dynamic distribution of buffering

resources, we propose the use of floating buffers that

can be assigned to any output port to increase their

buffering size. With extra buffers it is possible to reduce

the size of the fixed buffers to a minimum (e.g., 16

words) and then dynamically compensate for the lack

of buffering by assigning the floating buffers to the

output ports most congested. The router will have a

structure similar to the static router, except that the

adaptive router includes a few extra modules to control

the floating buffers and to dynamically put them in the

datapath of the router (see figure 3).

The architecture shown in the figure has a single

floating buffer that can be associated with any output

port, except with the local port. This port has not been

considered since we assume the processing element

connected to the local port is unable to collect data

simultaneously from two inputs. The arbiter associated

with an output port receives the requests from the input

ports and grants access to its buffer. Case the static

buffer is full and the floating buffer is assigned to it

then it grants access to the floating FIFO. If the floating

FIFO gets full then it returns to the static FIFO.

The assignment of the floating buffer is made by

the floating buffer controller. Several policies can be

followed to assign the floating buffer. In this work, the

floating buffer can be reassigned if it is empty and the

controller assigns it to a port having a full fixed buffer

for at least five cycles. For a fair assignment, all eligible

ports for assignment (those with full static buffers) are

chosen in a round-robin manner.

DYNAMIC BUFFER RESIZINGTECHNIQUE FOR NETWORKS ON CHIP: FPGA PERSPECTIVE

Indian J.Sci.Res. 17(2): 114-117, 2018

Figure 3. Architecture of an adaptive router with buffer

resize.

More aggressive policies could be followed. For

example, a port with both static and floating buffers

could allow simultaneous writes on both buffers. This

would allow two input ports to forward their flits

simultaneously to the same output port. Also, instead of

forwarding the flits alternately from each buffer, it

could forward any buffer based on the arrival order and

the congestion of the next router. This would potentially

improve the performance of the network but at the cost

of more control logic.

VI. Conclusion

The paper addressed the various buffer resize

approaches. From the experiments presented, we

conclude that adaptive routers are promising

alternatives to static routers and must be considered in

the design process. This paper also addressed the

design of adaptive routers on FPGA using buffer resize.

References

[1] Stensgaard, M. and Spars, J. ǁReNoC: A Network-

on-Chip Architecture with Reconfigurable

Topologyǁ. In the 2nd ACM/IEEE International

Symposium on Networks-on-Chip, 2008, pp. 55-

64.

[2] Faruque, M., Ebi, T. and Henkel, J., ǁRun-time

Adaptive onchip Communication Schemeǁ. In

Proceedings of ICCAD, 2007, pp. 26 -31.

[3] Al Faruque, M.A., Ebi. T., Henkel J., ǁROAdNoC:

Runtime Observability for an Adaptive Network on

Chip Architectureǁ. In IEEE/ACM International

Conference on Computer-Aided Design, ICCAD

2008, 543-548.

[4] Concatto, C., Matos, D., Carro, L., Kastensmidt, F.,

Susin, A., and Kreutz, M., ǁNoC Power

Optimization Usinga Reconfigurable Routerǁ. In

the IEEE Symposium on VLSI, 2009.

[5] Matos, D., Concatto, C., Kologeski, A., Carro, L.,

Kastensmidt, F., Susin, A., and Kreutz, M., ǁ

Adaptive router architecture based on traffic

behavior observabilityǁ. In Proceedings of the 2nd

international Workshop on Network on Chip

Architectures, 2009.

[6] Soteriu, V., Ramanujam, R., Lin, B., and Peh, L-S.,

ǁA High- Throughput Distributed Shared-Buffer

NoC Routerǁ. IEEEComputer Architecture Letters,

vol. 8, n 1, January-June 2009.

[7] Wang, L., Zhang, J., Yang, X., and Wen, D.,

Router with Centralized Buffer for Network-on-

Chipǁ. GLSVLSI, 2009.

[8] Hu, J., and Marculescu, R., ǁEnergy- and

Performance- Aware Mapping for Regular NoC

Architecturesǁ. In IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems,

2005, vol. 24, n 4, pp. 551 -562.

