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Abstract-NoCs provide much higher bandwidth than buses but have higher area and delay. Routers need buffers, routing 

tables, a switching circuit and arbiters. So, they occupy more area than a bus based network. Also, direct bus connections 

are faster than pipelined connections through one or more routers since these introduce a delay due to packing, routing, 

switching and buffering. Application specific systems can benefit from heterogeneous NoCs providing high bandwidth in a 

localized fashion where it is needed to eliminate bottlenecks and sized communication resources to reduce area utilization. 

Networks-on-chip have a relative area and delay overhead compared to buses. These can be improved in application 

specific systems where heterogeneous communication infrastructure provide high bandwidth in a localized fashion and 

reduce underutilized resources. However, for general purpose architectures, design time techniques are not efficient. One 

approach for improving area and/or performance of NoCs for general purpose systems is to consider dynamic adaptation of 

the resources at runtime. In this paper, we analyze the different buffer resize approaches and FPGA implementation. 
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I. Introduction 

NoCs provide much higher bandwidth than buses 

but have higher area and delay. Routers need buffers, 

routing tables, a switching circuit and arbiters. So, they 

occupy more area than a bus based network. Also, 

direct bus connections are faster than pipelined 

connections through one or more routers since these 

introduce a delay due to packing, routing, switching and 

buffering. 

Application specific systems can benefit from 

heterogeneous NoCs providing high bandwidth in a 

localized fashion where it is needed to eliminate 

bottlenecks and sized communication resources to 

reduce area utilization. 

For general-purpose computing, the 

communication architecture cannot be tailored for any 

specific application. So, in general, designers consider 

that regular NoC structures are the most adequate for 

general-purpose computing where processing and data 

communication are relatively equally distributed 

among all processing units and traffic characteristics 

cannot be predicted at design time. However, in general, 

resources  are used differently when executing different 

applications on the same NoC. So, if some resources are  

necessary and sufficient for one application, they may 

be under or over utilized in the execution of another. 

The efficiency of the interconnection network can 

be improved if runtime changes are considered. A 

system running a set of applications can benefit from 

the runtime reconfiguration of the topology and of the 

routers to improve performance, area and power 

consumption considering a particular data 

communication pattern.  

Customizing the number of ports, the size of the 

buffers, the switching technique, the routing algorithm 

and the switch matrix are possible runtime changes that 

can be considered in an dynamically adaptive NoC. 

In this paper, we analyze some proposed dynamic 

buffer resize techniques and more efficient buffer 

resizes technique for FPGA. In section II, the related 

work is described. In section III, we analyze the 

previous techniques for buffer resize and In section IV 

we propose a adaptive buffer resize technique for 

FPGA. Finally, section V concludes the paper. 

II. Related Work 

Adaptability in NoCs was proposed in several  

works considering several aspects of the NoC, including 

topology, routing, switching, buffering and crossbar. A 

few dynamically reconfigurable topologies for NoCs 

have been proposed recently [1]. But most of the work 

on dynamic adaptability of NoCs has concentrated on 

the routers. Some works improve the performance of 

routing algorithms using adaptive techniques use a 

pseudo adaptive XY-routing that depends on traffic 

conditions. In [5] the best path is determined at runtime 

considering the distance to the destination and link 

bandwidth usage. While adaptive algorithms are able to 

achieve the best redistribution of traffic, they are harder 

to implement, need virtual channels to avoid deadlocks, 

by default do not guarantee ordered packet arrival and 

depends on the ability to keep real- time information 

about the network utilization, which is a complex task. 
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Generally, these routing algorithms rely only on 

neighbor information, which restricts its efficacy. 

Runtime switching   was   considered   in   [6]   with   a   

hybrid switching mechanism (packet/circuit switching) 

to guarantee quality of service for real-time 

applications. 

III. Analyses Of Previous Techniques For Buffer Resize 

The efficiency of dynamic buffer resize depends 

on the cost of buffers in terms of occupied resources 

compared to that of other blocks of the router. This cost 

relation depends on the target technology, that is, 

buffers occupy more area relative to the other blocks 

when implemented in standard-cell technology than 

when implemented in FPGA. Since in this work we are 

targeting the FPGA technology, we have analyzed the 

efficiency of some state-of-the-art dynamic buffer 

resize techniques for standard- cell technology when 

implemented on FPGA. 

In [3], a number of buffer blocks are dynamically 

reassigned on-demand. The area overhead of the 

adaptive router compared to that of the static router is 

500 LUTs. With such number of LUTs it is possible to 

have 12 FIFOs of depth 16, which reduces considerably 

the efficiency of the solution. 

In the buffer resize technique in [4] a channel may 

borrow some buffer units from its neighbor. The 

implementation uses extra multiplexers so that any 

buffer unit can be assigned to a neighbor. The tests 

show that the router with adaptive buffers of size 4 

achieves the same performance of a static router with 

buffers of size 9, with a decrease of 6% in the area. If 

implemented in FPGA, the buffers have to  be 

implemented as registers, which are very expensive in 

terms of resources given that an implementation of 

buffers with size 4 or 9 are best implemented with 

SRL16 primitives using the same number of LUTs. 

Also, the solution is not scalable since the number of 

extra logic increases more than linearly with the size  of 

the buffers. So, the solution it worthless for FPGA. In 

[5] the same authors propose the same router that 

adapts itself to provide appropriate buffer depth for 

each channel to sustain the performance with minimum 

power dissipation. This time to achieve the same 

performance, the adaptive router consumes about 30% 

less power but uses 55% more resources than the static 

buffer. 

In [7], a centralized buffer structure is proposed, 

which dynamically allocates buffer resources based on 

traffic requirements. Each buffer is divided into slots 

implemented as registers. Slots are than linked by one 

linked  list.  This centralized buffer management 

approach dynamically allocates buffer slots to different 

packets according to the traffic needs. The tested 

network uses a central buffer with 60 slots(an  average 

of 12 slot per port). 60 slots with 8-bit each needs 480 

bit registers. When implemented in an FPGA, it needs  

480 LUTs. This number of LUTs is enough to implement 

seven 8-bit FIFOs of depth 16 or five 8-bit FIFOs  of 

depth 64, more than  the   number  of  slots  available  

for  a  single  port  (60    slots).  

Therefore, using this approach, we can achieve a 

higher performance with static buffers when 

implemented  in FPGA. 

The problem with these solutions is that they are 

quite expensive in terms of resources when implemented 

in an FPGA since they cannot use the SRL primitives. 

Typically, implementing a FIFO with flip-flops uses 16× 

more LUTs in a Virtex-4 than when implemented with 

SRL primitives. Also,  some solutions use many 

multiplexers, and control, increasing even more the cost 

of the solution in terms of area. 

IV. Adaptive Buffer Resize 

Buffer resizing can be used to improve latency or 

minimize the area of a router. For heavy loaded 

networks increasing the buffer size will decrease 

blocking of packets  since buffers  can be emptied faster 

because the following buffers in the path have higher 

probability of not being full. 

 

Figure 1. Average latency for different buffer sizes and 

injection rate for uniform traffic. 

To illustrate this behavior, we tested a 6 × 6 NoC 

with uniform traffic and XY routing using buffers with 

different sizes moving packets with 32 flits (see figure 

1). 

The average latency grows faster with increasing 

injection rate for  NoCs  with  smaller buffers. For 

example, with 35 % network loading and buffers with 

depth of 16 the average latency is about 128 cycles. 

Increasing the buffers to 32 words will improve the 

latency by about 33 % and increasing it to 64 words will 

improve the latency by about 40 %. The main 
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disadvantage of this approach is the area overhead 

associated with the buffers.  

Therefore, in the customization process of the 

router, the size of the FIFOs must be carefully chosen to 

avoid using buffers deeper than what is needed to 

achieve the system requirements while optimizing area 

utilization. A simple experiment can be followed to 

show this tradeoff. Using a NoC with the same 

configuration, we injected a burst of 50 packets from 

each processing element (with an injection rate of 35%), 

considering  4-hotspot traffic  and all buffers with a 

depth of 16. In, the size of each buffer with an average 

utilization higher than a given threshold value was 

doubled. For each configuration, the area and average 

latency were determined through simulation. The results 

are as expected (see figure 2). 

As can be observed from the figure, the latency is 

reduced from 185 cycles down to 133 cycles (almost 

30% improvement) by doubling the size of the buffers. 

The latency decreases rapidly when the depth of most 

utilized buffers are doubled. For example, if buffers 

with an utilization higher than 40% are increased, the 

latency is reduced about 20%. 

 

Figure 2. Average latency for different buffer sizes and 
injection rate for uniform traffic. 

The techniques already proposed to dynamically 

resize buffers achieve performance and/or power 

improvements at the cost of some area overhead. 

However, most of them target ASIC technology where 

area utilized by the buffers is proportional to their size. 

This is not the case with FPGA technology, where 

buffers as FIFOs can be efficiently implemented using 

the SRL primitives  of LUTs. 

The areas of the FIFOs are practically the same for 

a set of sizes, as shown in table 1. This is because each 

4-input LUT implements a 16-bits shift register. So, the 

efficiency of the proposed techniques for buffer 

resizing has to be reanalyzed considering these figure 

V. Adaptive Buffer Resize Technique For FPGA 

A buffer with depth-4 for 8-bit  words implemented  

with registers requires about 40 LUTs. So, unless we 

use very small buffers (with a depth lower than 4), it is 

better to  implement FIFOs with SRL primitives. In our 

proposal, a buffer unit will consist of FIFOs of depth 16, 

32 or 64, whose implementation uses 39, 47 or 64 LUTs 

for 8-bit data implemented with LUTs configured as 

SRL. Other buffer size configurations can be also easily 

implemented.For the dynamic distribution of buffering 

resources, we propose the use of floating buffers that 

can be assigned to any output port to increase their 

buffering size. With extra buffers it is possible to reduce 

the size of the fixed buffers to a minimum (e.g., 16 

words) and then dynamically compensate  for the lack 

of buffering by assigning the floating buffers to the 

output ports most congested. The router will have a 

structure similar to the static router, except that the 

adaptive router includes a few extra modules to control 

the floating buffers and to dynamically put them in the 

datapath of the router (see figure 3). 

The architecture shown in the figure has a single 

floating buffer that can be associated with any output 

port, except with the local port. This port has not been 

considered since we assume the processing element 

connected to the local port is unable to collect data 

simultaneously from two inputs. The arbiter associated 

with an output port receives the requests from the input 

ports and grants access to its buffer. Case the static 

buffer is full and the floating buffer is assigned to it 

then it  grants access to the floating FIFO. If the floating 

FIFO gets full then it returns to the static FIFO. 

The assignment of the floating buffer is made by 

the floating buffer controller. Several policies can be 

followed to assign the floating buffer. In this work, the 

floating buffer can be reassigned if it is empty and the 

controller assigns it to a port having a full fixed buffer 

for at least five cycles. For a fair assignment, all eligible 

ports for assignment (those with full static buffers) are 

chosen in a round-robin manner. 
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Figure 3. Architecture of an adaptive router with buffer 

resize. 

More aggressive policies could be followed. For 

example, a port with both static and floating buffers 

could allow simultaneous writes on both buffers. This 

would allow two input ports to forward their flits 

simultaneously to the same output port. Also, instead of 

forwarding the flits alternately from each buffer, it 

could forward any buffer based on the arrival order and 

the congestion of the next router. This would potentially 

improve the performance of the network but at the cost 

of more control logic. 

VI. Conclusion 

The paper addressed the various buffer resize 

approaches. From the experiments presented, we 

conclude that adaptive routers are promising 

alternatives to static routers and must be considered in 

the design process. This paper also addressed the 

design of adaptive routers on FPGA using buffer resize. 
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