
Indian J.Sci.Res. 17(2): 111 - 117, 2018 ISSN: 0976-2876 (Print)

 ISSN: 2250-0138(Online)

1Corresponding Author

AN INSIGHT ABOUT GLUSTERFS AND ITS ENFORCEMENT TECHNIQUES

1
Manikandan Selvaganesan,

2
Mohamed Ashiq Liazudeen,

3
BhuvaneshwariSelvaganesan

1,2
Associate Software Engineer, Department of Products & Technologies,Red Hat, Bangalore.

3
Assistant Professor, Dept. of Computer Science and Engg, Sri Eshwar College of Eng, Coimbatore

Abstract—The world keeps contributing to the increase in data everyday drastically. Scientific applications, weather

forecasting, researches, hospitals, military services are few such major contributors. As the amount of data increases, the

need to provide efficient, easy to use solutions has become one of the main issues for these type of computations. The best

solution to this issue is the use of Distributed File Systems(DFS). Some existing Distributed File Systems are too complex

to deploy and maintain, although they are extremely scalable and cheap since they can be entirely built out of commodity

Operating System(OS) and hardware. GlusterFS solves this problem. Gluster File System(GFS) is open source and is

capable of scaling to several petabytes(upto 72 brontobytes) and handling thousands of clients. It is based on a stackable

user space design and can deliver exceptional performance for diverse workloads. GlusterFS is written in user space which

uses FUSE(Filesystem in user space) to hook itself with the VFS layer. It takes a layered approach to the file system, where

features are added/removed as per the requirement. Enforcer is a major component in Gluster which finds its extensive use

in production. Enforcer is concerned more about limits. It helps to restrict the usage(both in terms of size and count) at

directory or volume level in the file system. In this paper, we discuss the internal working of the translators and key

architectural components of GlusterFS. Along with that, one can gain a deep insight about the enforcement techniques, few

challenges,undergoingresearchesandprojectsofGlusterFS.

Keywords:Distributed File System(DFS), Gluster File Sys- tem(GFS), Translators, Enforcer, Marker

I. Introduction

GlusterFS is a scalable open source clustered file

system that offers a global namespace, distributed front

end, and scales to hundreds of petabytes without

difficulty. It also offers extraordinary cost advantages

benefits that are un- matched in the industry. No longer

are users locked into costly, monolithic, legacy storage

platforms. GlusterFS gives users the ability to deploy

scale-out, virtualized storage scaling from terabytes to

petabytes in a centrally managed and commoditized pool

of storage,which is available to users in a single mount

point, making it simple for the user.

At the heart of the design Gluster File System is a

completely new view of how storage architecture should

be done. The result is a system that scales linearly, is

highly resilient, and offers extraordinary performance.

Additionally, Gluster brings compelling economics by

deploying on low cost commodity hardware and scaling

horizontally as perfor- mance and capacity requirements

grow.

A. NotonlyStoragebuttheStorageSystem

Storage does not scale linearly. One can think this is

counter-intuitive on the surface since it is easy for

someone

topurchaseanothersetofdiskstodoublethesizeofavailable

storage. An important limitation in doing so is that the

scalability of storage has multiple dimensions,

capacitybeing one of them. Adding capacity is only one

dimension, there are few other factors which contribute

as well such as the CPU capacity, the scalability of the

file system to support the total size. Another major thing

is the metadata telling the system where all the files are

located must scale at the same rate disks are added and

the network capacity available must scale to meet the

increased number of clients accessing those disks. To be

precise, as the title says, it is not the storage that needs to

scale as much as it is the complete storage system that

needs toscale.

B. TraditionalApproach

With current Distributed File Systems(DFS) the

problem is that systems scale logarithmically as

discussed here[1]. This is re-factored in Gluster file

system. With the former approach, storage’s useful

capacity grows more slowly as it gets larger. This is due

to the increased overhead necessaryto maintain data

strength. This limitation is examined bytesting the

performance of some storage networks which clearly

reflects that larger units offer slower aggregate

performance than their smaller counterparts. It is

necessary to completely revisit the underlying

architecture to overcome this limita- tion. Any system

that requires end-to-end synchronisation of metadata or

offers a limited number of networking ports must be

implemented efficiently from its base architecture. Those

solutions that cannot act as a cluster of independent

storage units are bound to find a scalability limitation

sooner rather thanlater.

AN INSIGHT ABOUT GLUSTERFS AND ITS ENFORCEMENT TECHNIQUES

Indian J.Sci.Res. 17(2): 111 - 117, 2018

C. True Linear Scalability inGlusterFS

To achieve true linear scalability, there are some

funda- mental changes to how storage must be done

• Metadata synchronisation and updates could be

elimi- nated.

• The way data is distributed to achieve scalability

and reliability.

• Makeuseofparallelismtoimproveperformance.

The impact of these change can significantly result in im-

proved performance. GlusterFS is one such proven

example.Tounderstand how these are achieved with

GlusterFS, let’s dig into how these changes work.

II. An Overview OfGlusterFS

As mentioned above, GlusterFS has no metadata

server and is capable of linear scaling and can handle

uptothousand

clients.Let’slookabitmoredeeperonhowarethesefeatures

affect performance of any distributed file system and

howare they efficiently achieved inGlusterFS.

A. Meta Data’s Impact onPerformance

For distributed file systems, metadata is the heart and

soul of how data is organized. Scaling and metadataare

way dependent. A simple measure of performance

involves simply timing of how long it takes to read or

write a single large file. This brute force technique is

called”sustained sequential access” and which is the

basic thing any file system would be expected to do.

Anyways that does not tell the customer about how the

system would perform in a real world environment. The

more complicated theworkload, the more you would

observe metadata also being exercised equally or greater

in proportion to the number of I/O events

directedtowardsthecontentsofeachtargetedfile.

An additional layer of complexity comes with a vari-

ety of settings distributed geographically, creating

inherent complexity for the distributed metadata updates.

It isthe

fundamentalnatureofmetadatathatitmustbesynchronously

maintained in lockstep with the data. Any time the

data is touched in any way, the metadata must be

updatedto reflect this. Many people are surprised to learn

that for every read operation touching a file, this

requirement to maintain a consistent and correct

metadata representation of ”access time” means that the

timestamp for the file must be updated, incurring a

writeoperation.

Another important issue is that when metadata is

stored in multiple locations, the requirement to maintain

itsyn- chronously also implies significant risk related to

situations when the metadata is not properly kept in sync,

or in the event if it is actually damaged. Gluster does not

have a bottleneck regarding metadata. In fact, it does not

need to scale its handling of metadata at all. Let’s look on

how the

conceptof”NoMetadata”helpsGlustermorescalable.

B. Gluster’sKeys toScalability

One of the most important advantages found in Glus-

ter’sarchitecture is its liberation from any dependency on

metadata, unique among all commercial

storagemanagement systems. This fundamental shift in

architecture addresses the core issues surrounding

metadata in file systems.Gluster got rid of the

complexities of metadata in a centralized or

distributedenvironmentwhichotherfilesystemshave.

For all files and directories, instead of storing

associated metadata in a set of static data

structures(whether replicated and optionally distributed,

or kept locally) also instead of applying the same

inadequate band-aid to address the classic ”metadata

bottleneck” problem encountered by traditional

distributed file system models, by moving metadata intoa

dedicated server with its own bottlenecks and issues -

Gluster instead generates the equivalent information on-

the- fly using algorithms. The results of those

calculations are dynamic values acquired wherever

needed in each of one or more nodes in a Gluster

deployment. This eliminates the risk that metadata will

never get out of sync because the algo- rithms are

universal and omnipresent across the distributed

architecture, and therefore for many fundamental reasons

simply cannot ever be out of synch. And the implications

for performance arestaggering.

Gluster can process all data access operations indepen-

dently at all locations throughout the distributed

architecture because there is no requirement for the nodes

to ”stay in synch”. That allows for linear scaling with no

overhead.

In the next section, let’s look on how GlusterFS is

imple- mented using various translators and types of

volumes that GlusterFS has, followed by the overall

working architecture.

III. Architecture OfGlusterFS

Let’s now explore how GlusterFS is implemented in

the real world. Brick is the basic unit of storage in

GlusterFS, represented by an export directory on a server

in the Trusted Storage Pool(TSP). Volume is the

collection of bricks and most of the gluster file system

operations happen onthe volume. Depending on the need

one can choose the type

ofvolume.FollowingarethetypeofGlusterFSvolumes:

A. VolumeTypes

AN INSIGHT ABOUT GLUSTERFS AND ITS ENFORCEMENT TECHNIQUES

Indian J.Sci.Res. 17(2): 111 - 117, 2018

• Distributed GlusterFSVolume - This is the default

glusterfs volume i.e, while creating a volume if you

do not specify the type of the volume the default

option is to create a distributed type of volume.

Herefiles are distributed across various bricks in the

volume. Referring Fig. 1, file1 may be sto

in brick1 or brick2 but not on both. Hence there is

no data

redundancy.Thepurposeforsuchastoragevolumeisto

easily scale the volume size. However this also

means that a brick failure will lead to complete loss

of data and one must rely on the u

hardware for data lossprotection.

Fig. 1. Plain distribute volume

• Replicated GlusterFSVolume - In this volume we

overcome the data loss problem faced in the

distributed volume. Here exact copy of the data is

maintained on all bricks. The number of replicas in

the volume can

bedecidedbyclientwhilecreatingthevolume.Onemajo

r advantage of such a volume is that even if one

brick fails the data can still be accessed from its

replica brick. Such a volume is used for better

reliability and data redundancy.

• Gluster also has other volume types likeDistributed

Replica, Striped, Distributed Striped

GlusterFSVolumes which has its own additional

advantages and usecases. Also, the volume type

can be EC(Erasure Coding) or a tiered volume or

a disperse volume and so on. The disperse

translator is a new type of volumefor GlusterFS that

can be used to offer a configurable level of fault

tolerance while optimizing the disk space waste. It

can be seen as a RAID5-like volume.

triplication(three way replication) which is ex

pensive and instead of wasting two redundant

disks for every data, one can use erasure volume[2]

which desires protection from double failure.

efficiently access(recently accessed) the files, one

can use the tiered volume which contains hot tier

and cold tier where the recently accessed ones are

stored in the former for a particular timeout(user

formattable) and then is moved to the later.

AN INSIGHT ABOUT GLUSTERFS AND ITS ENFORCEMENT TECHNIQUES

This is the default

glusterfs volume i.e, while creating a volume if you

do not specify the type of the volume the default

option is to create a distributed type of volume.

Herefiles are distributed across various bricks in the

volume. Referring Fig. 1, file1 may be stored only

in brick1 or brick2 but not on both. Hence there is

no data

redundancy.Thepurposeforsuchastoragevolumeisto

easily scale the volume size. However this also

means that a brick failure will lead to complete loss

of data and one must rely on the underlying

Fig. 1. Plain distribute volume

In this volume we

data loss problem faced in the

distributed volume. Here exact copy of the data is

number of replicas in

the volume can

bedecidedbyclientwhilecreatingthevolume.Onemajo

r advantage of such a volume is that even if one

brick fails the data can still be accessed from its

replica brick. Such a volume is used for better

Gluster also has other volume types likeDistributed

Replica, Striped, Distributed Striped

which has its own additional

advantages and usecases. Also, the volume type

can be EC(Erasure Coding) or a tiered volume or

rse volume and so on. The disperse

translator is a new type of volumefor GlusterFS that

can be used to offer a configurable level of fault

tolerance while optimizing the disk space waste. It

like volume. To avoid

three way replication) which is ex-

pensive and instead of wasting two redundant

disks for every data, one can use erasure volume[2]

which desires protection from double failure. To

efficiently access(recently accessed) the files, one

volume which contains hot tier

and cold tier where the recently accessed ones are

stored in the former for a particular timeout(user

formattable) and then is moved to the later.

Choosing the volume type is based on the use case

while deploying in the real

Letusquicklymoveontothenextaspect(s).

Let’s dig more on how Gluster is implemented in the

userspace in next section.

B. GlusterFS - User SpaceFile System

GlusterFS is a userspacefilesystem. Being a

userspacefilesystem, to interact with kernel VFS,

GlusterFS makes use of FUSE(Filesystem in

Userspace)[3].

Fig. 2. Structural diagram of FUSE

Fig. 2 shows a filesystem ”hello world” that is compiledto

create a binary ”hello”. It is executed with a filesystem

mount point /tmp/fuse. Then the user issues a commandls

l on the mount point /tmp/fuse. This command reaches

VFS via glibc since the mount /tmp/fuse corresponds to a

FUSE based filesystem, VFS passes it over to FUSE

module. The FUSE kernel module contacts the actual

filesystem binary ”hello” after passing through glibc and

FUSE library in userspace(libfuse). The result is returned

by the ”hello” through the same path and reaches the ls

command. The communication between FUSE kernel

module and the FUSE library(libfuse) is via a special file

descriptor which is obtained by opening /dev/fuse. This

file can be opened multiple times, and

descriptor ispassed to the mount syscall, to match up the

descriptor with the mounted filesystem.

know that GlusterFS

incorporatesalotoffeatures.Thesefeaturesareimplemented

as translators. Though there are lot of transl

some insight on cluster and feature translators in the next

section.

C. Translators inGlusterFS

Choosing the volume type is based on the use case

while deploying in the real world.

Letusquicklymoveontothenextaspect(s).

Let’s dig more on how Gluster is implemented in the

System

GlusterFS is a userspacefilesystem. Being a

userspacefilesystem, to interact with kernel VFS,

sterFS makes use of FUSE(Filesystem in

Fig. 2. Structural diagram of FUSE

Fig. 2 shows a filesystem ”hello world” that is compiledto

create a binary ”hello”. It is executed with a filesystem

mount point /tmp/fuse. Then the user issues a commandls -

l on the mount point /tmp/fuse. This command reaches

/tmp/fuse corresponds to a

FUSE based filesystem, VFS passes it over to FUSE

module. The FUSE kernel module contacts the actual

filesystem binary ”hello” after passing through glibc and

FUSE library in userspace(libfuse). The result is returned

llo” through the same path and reaches the ls -l

command. The communication between FUSE kernel

module and the FUSE library(libfuse) is via a special file

descriptor which is obtained by opening /dev/fuse. This

file can be opened multiple times, and the obtained file

descriptor ispassed to the mount syscall, to match up the

descriptor with the mounted filesystem. Now, we clearly

know that GlusterFS

incorporatesalotoffeatures.Thesefeaturesareimplemented

as translators. Though there are lot of translators, let’s gain

some insight on cluster and feature translators in the next

AN INSIGHT ABOUT GLUSTERFS AND ITS ENFORCEMENT TECHNIQUES

Indian J.Sci.Res. 17(2): 111 - 117, 2018

A translator converts requests from users intorequests

for storage. A translator can modify requests on the way

through : convert one request type to another(during the

request transfer amongst the translators) and modify

paths, flags or even data(e.g. encryption). Translators can

intercept or block the requests(e.g. access control) or

spawn new requests(e.g. pre-fetch). Translators make use

of shared ob- jects to communicate with one another.

They are dynam- ically loaded according to volfile. Each

translator sets up pointers to parent/child translators, call

init(constructors) and call IO function through fops and

has the provision for validating/passing options to one

another. The configuration of translators(since GlusterFS

3.1) is managed through the gluster command line

interface(cli), so one need not know in what order to

graph the translators together. Every translator has it’sown

functional purpose. Throughout the translators, it’s been

noted that ”Extended Attributes” are important.

Let’slookmoreonthisinamoment.

D. ExtendedAttributes

GlusterFS makes use of extended attributes in

replication, distribution, striping etc. In DHT a directory

must be present on all bricks and each directory copy will

be assigned a hash range stored in its extended attribute -

trusted.glusterfs.dht. A directory lookup will return the

layout(hash ranges collected from the xattrs) which is

stored in a table. This helps us to look for missing hash

ranges(possible if the brick is down), overlaps, etc. In

AFR the extended attribute - trusted.afr.* where * is the

brick name, is used for recording operation failure.

Consider two bricks brick0 and brick1 in a volume. A file

on brick0 has the xattr trusted.afr.brick1 and a file on

brick1 has the xattr trusted.afr.brick0. This is because if

we store both the state of operation(success or failure)

and the actual operation on the same brick and if that

brick goes down, then there would be no way to recover

from failure

sincewelosethestateoftheoperations.Hencetheoperationa

ndthestateofoperationarestoredattwodifferent places. The

xattr works as a counter and records counts for three

different kinds of operations data, metadata and entry. To

perform an operation there are three stages:

1) Preop- whenever a modification is to be made all the

counters will be incremented. 2) Op - here the operation

is actually performed. 3) Postop - if the operation was

successful then the counters are decremented. If the

operation wassuccessful across all the bricks then all

counters would go back to zero. However in our example

if the brick0 was down or had crashed before the

operation was successfully completed then the counter for

brick0 stored on brick1 willremain non-zero which implies

that the operation on brick0was unsuccessful. Now comes

the feature translators. Let’s look on how quota and marker

handles the extended attributes. Quota and marker makes

uses of xattr’s such as : 1) size - to store the size of

directory(or subdirectory). 2) contri - how much(size) of

data is being contributed to the ancestor(s). 3) dirty-

aflagtomakesuretheatomicityofoperations.

Some of the other xattrs are trusted.gfid used to detect

duplication in inode numbers. trusted.glusterfs.test stored

in the root directory of every brick used for determiningif

xattrs are supported. Native access mechanism being

used in GlusterFS is Fuse. GlusterFS also has alternate

access mechanisms[5] libgfapi, GlusterNFS, GlusterFS

and NFS- Ganesha integration and using Samba(for

windows environ- ment) areimplemented.

E. Overall Working ofGlusterFS

Let’s consider GlusterFS is installed on a servernode.

As soon as it is installed, a gluster management dae-

mon(glusterd) binary will be created. This daemon

should be running in all participating nodes in the cluster.

Afterstarting glusterd, a Trusted Server Pool can be

created consisting of all storage server nodes(TSP can

contain even a single node). Now bricks which are the

basic units of storage can be created as export directories

in these servers. Any number of bricks from this TSP can

be clubbed together to form a volume. Once a volume

is created, a glusterfsd process starts running in each of

the participating brick. Along with this, configuration

files known as vol files will be generated

inside/var/lib/glusterd/vols/.Therewillbeconfigurationfile

s corresponding to each brick in the volume. This will

contain all the details about that particular brick.

Configuration file required by a client process will also

be created. Now the file system is ready to use. We can

mount this volume on a client machine very easily.

When we mount the volume in the client, the client

GlusterFS process communicates with the server’s

glusterd process. Server glusterd process sends a

configuration file(vol file) containing the list of client

translators and another containing the information of

each brick in the volume with the help of which the client

GlusterFS process can now directly communicate with

each bricks glusterfsd process. The setup is now

complete and the volumeisnowreadyforclient’sservice.

As shown in Fig. 3, when a system call(File operation

orFop)isissuedbyclient(orapplication)inthemounted

AN INSIGHT ABOUT GLUSTERFS AND ITS ENFORCEMENT TECHNIQUES

Indian J.Sci.Res. 17(2): 111 - 117, 2018

Fig. 3. Overall working of GlusterFS

filesystem, the VFS(identifying the type of filesystem to

be glustefs) will send the request to the

module.

TheFUSEkernelmodulewillinturnsendittotheGlusterFS in

the userspace of the client node via /dev/fuse(this

hasbeen described in FUSE section). The GlusterFS

process in client consists of a stack of translators called

the client translators which are defined in the

configuration file(vol file) sent by the storage server

glusterd process. In the next section let us

discussmoreabouthowquotaenforcesandmarkermaintains

accounting and communicate with other translators.

Along with that, we will also explore on the techniques

used by them.

IV. Enforcer Techniques

Accounting Translator -Marker

As mentioned in the previous section, quota does the

the enforcing works and marker is the one which does the

actual accounting. Quota enforcement is done

side. It is not done in client side, because all the clients

could not be trusted and to reduce the traffic on the

network(if it is done on the client side, then we have to

rely on lookup calls on file/directory(inode) to update the

contribution). One can set the quota at the following

levels :

• Directorylevel-limitstheusageatthedirectorylevel.

• Volume level - limits the usage at the volume level.

Usercansetbothhard-limitandsoft-limits.

• Soft limit : Messages will be logged on reaching the

softlimits.

• Hard limit : Writes will fail with EDQUOT (Disk

AN INSIGHT ABOUT GLUSTERFS AND ITS ENFORCEMENT TECHNIQUES

Fig. 3. Overall working of GlusterFS

filesystem, the VFS(identifying the type of filesystem to

be glustefs) will send the request to the FUSE kernel

TheFUSEkernelmodulewillinturnsendittotheGlusterFS in

the userspace of the client node via /dev/fuse(this

hasbeen described in FUSE section). The GlusterFS

process in client consists of a stack of translators called

s which are defined in the

configuration file(vol file) sent by the storage server

glusterd process. In the next section let us

discussmoreabouthowquotaenforcesandmarkermaintains

accounting and communicate with other translators.

lso explore on the techniques

Enforcer Techniques And The

Marker

As mentioned in the previous section, quota does the

the enforcing works and marker is the one which does the

actual accounting. Quota enforcement is done on server

side. It is not done in client side, because all the clients

could not be trusted and to reduce the traffic on the

network(if it is done on the client side, then we have to

rely on lookup calls on file/directory(inode) to update the

). One can set the quota at the following

limitstheusageatthedirectorylevel.

limits the usage at the volume level.

Soft limit : Messages will be logged on reaching the

Hard limit : Writes will fail with EDQUOT (Disk

quota exceedederror)oncetheyreachhardlimit.

Translators marker and enforcer sits on server side

Quotad is a client process without a mount point. It has

the same graph as client graph(client

>brick). In case of replica we take the one which shows

higher size. We store inode-memory(limit) in inode

context itself. Write operation is expensive if for every

operation we contact quota daemon. So we have stored

limit in inode memory as well. Accounting

the marker translator. Marker translator is present in each

brick of the volume. Accounting process happens in the

background and it doesnthappen while the file operation

is being carried out simultaneously. Every time a delta

value is calculated(the difference between the current

size and older size) and then it is sent recursively

upwards to the root of the volume, which is also

stored as contri in every file/directory. During the initial

lookup, extended attributes are created or whe

quotaenable happens, a lookup is initiated and the

extended attributes arecreated.

A. QuotaAttributes

Extended attributes of quota[6] look like this :

• trusted.glusterfs.quota.00000000

000000000001.contri=0x000000000000000000000000

0

00000000000000000000001

• trusted.glusterfs.quota.limit-set=0x0000000000500

000ffffffffffffffff(5.0isthehardlimitthatssethere)

• trusted.glusterfs.quota.size=0x00000000000000000000

0000000000000000000000000001

In the above example:

• ’contri’ xattr: ’contri’

size of how much it contributes to the parent

directory(recursive upto every directory upto

root). Here, the value ’00000000

000000000001’ before the .contri in thexattr

corresponds to the gfidof th

value

’0x0000000000000000000000000000000000000

00000000001’, ’0x’ represents hexadecimal and the

first sixteen digits(or 64bits) corresponds to the

actual size contributed, the next sixteen digits

corresponds to the file count and t

digits corresponds to the dircount.

• ’limit-set’ xattr: The ’limit-set’ xattr, as the name

says, helps to enforce(restrict) the usage on a

specified directory. trusted.glusterfs.quota.limit

set=0x0000000000500000ffffffffffffffff(5.0

hard limit that is set here by the user) In the ’limit

set’ xattr the first sixteen digits corresponds to hard

quota exceedederror)oncetheyreachhardlimit.

Translators marker and enforcer sits on server side

Quotad is a client process without a mount point. It has

the same graph as client graph(client->dht->afr-

ick). In case of replica we take the one which shows

memory(limit) in inode

context itself. Write operation is expensive if for every

operation we contact quota daemon. So we have stored

limit in inode memory as well. Accounting is done using

the marker translator. Marker translator is present in each

brick of the volume. Accounting process happens in the

background and it doesnthappen while the file operation

is being carried out simultaneously. Every time a delta

lated(the difference between the current

size and older size) and then it is sent recursively

upwards to the root of the volume, which is also

stored as contri in every file/directory. During the initial

lookup, extended attributes are created or whenever

quotaenable happens, a lookup is initiated and the

Extended attributes of quota[6] look like this :

trusted.glusterfs.quota.00000000-0000-0000-0000-

000000000001.contri=0x000000000000000000000000

set=0x0000000000500

isthehardlimitthatssethere)

trusted.glusterfs.quota.size=0x00000000000000000000

0000000000000000000000000001

 xattr contains the

size of how much it contributes to the parent

directory(recursive upto every directory upto

root). Here, the value ’00000000-0000-0000-0000-

000000000001’ before the .contri in thexattr

corresponds to the gfidof the parent. About the

’0x0000000000000000000000000000000000000

00000000001’, ’0x’ represents hexadecimal and the

first sixteen digits(or 64bits) corresponds to the

actual size contributed, the next sixteen digits

corresponds to the file count and the next sixteen

digits corresponds to the dircount.

set’ xattr, as the name

says, helps to enforce(restrict) the usage on a

specified directory. trusted.glusterfs.quota.limit-

set=0x0000000000500000ffffffffffffffff(5.0 is the

hard limit that is set here by the user) In the ’limit-

set’ xattr the first sixteen digits corresponds to hard

AN INSIGHT ABOUT GLUSTERFS AND ITS ENFORCEMENT TECHNIQUES

Indian J.Sci.Res. 17(2): 111 - 117, 2018

|

|

limit and nextsixteendigitscorrespondstosoftlimit.

• size’xattr:trusted.glusterfs.quota.size=0x000000000

00 0000000000000000000000000000000000001.

The ’size’ xattr corresponds to the size of the

directory, where the first sixteen digits refer to the

actual size, the next sixteen bits refer to file count

and the next sixteen digits refer to the directory.

Size xattr is present only fordirectories.

• Dirty xattr - In backend dirty xattr always will be

zero. Whenever we need to account, we have

tomaintainconsistency and dirty xattr is used for it.

For example: Consider we have : ’/dir/file’ In ’file’,

contri is updated, and before we update ’dir’, some

problem happens(may be a brick has crashed), and

so ’dir’ is not updated. Now we have ’dirty’ set to

1(whenever a write or some operation that

modifies file happens, dirty xattr will be set to 1)

and then once ’contri’ is updated to ’dir’, we

change the ’dirty’ value back to 0. This way it

prevents from misaccounting. During lookup, we

inspect the ’dirty’ flag if it is zero, else(which

meansdirty is set to 1, probably an operation has

happenedand not updated successfully), we check

the sum of size of files under the directory, update

the size and contri in the directory(from leaf to root)

and make dirty again set to0.

The current mechanism stores count of objects/files as

partof extended attribute of a directory. Each directory

will havethe

numberoffilespresentinatreewithtreebeingconsideredas

the root of the directory (Applies to subdirectories as

well). Hence, crawling till root is not needed to retrieve

the number of files(objects). There is something called as

timeoutswhich also helps in the enforcement. Let’s look

on what is called astimeouts.

B. Timeouts

Memory cache size needs to be updated in order to

make the enforcer work properly. For performance

reasons, quota caches the directory sizes on client. You

can set timeout indicating the maximum valid duration of

directory sizes in cache, from the time they are

populated. For example: If there are multiple clients

writing to a single directory, there are chances that some

other client might write till the quota limit is exceeded.

However, this new file-size may not get reflected in the

client till size entry in cache has becomestale because of

timeout. If writes happen on this client during this

duration, they are allowed even though they would lead

to exceeding of quota-limits, since size in cache is not in

sync with the actual size. When timeout happens, the size

in cache is updated from servers and will be in sync and

no further writes will be allowed. A timeout of zero will

force fetching of directory sizes from server for every

operation that modifies file data and will effectively

disables directory size caching on clientside.

C. Challenges and the EnforcerTechniques

When you enable quota, glusterdinitiates ”find . xargs

stat”, just to lookup on each file and create the xattr’s.

When you disable quota, we send ”find . xargs stat”,

which crawls each file, and removes the xttr. Consider

we have a quota enabled volume. When quota is disabled

on this volume let’s see what are the steps being carried

out.

• CLIwillsendtherequesttoglusterd.

• Glusterd will initiate a backend process ’find / —

xargssetxattr-

x....’tocleanupallquotaxattrsinthebackend.

• CLIwaitsfortheresponsefromglusterd.

• Glusterd will continue to execute the operation that

CLI initiatedevenwhenonekillsCLI.

• As mentioned above, glusterd does a lookup on each

file and then remove the quota xattr associated with

the objects,buttherecouldbeproblemunderthescenario:

• The clean-up process may have terminated without

completely cleaning-up the quotaxattrs.

• One may try to enable quota before the clean-

upprocess hascompleted.

• In simple when quota is enabled again, this canmess-

up the markeraccounting.

To be precise, let us consider an example, Example: Con-

sider, we have /dir/file where ’file’ is of size 5MB, so

’/dir’ and ’/’ will be accounted as 5MB. Here the cleanup

process of cleaning xattr of ’file’ is done, but failed to

cleanup xattr

on’/dir’and’/’.Itmaybebecausetheprocesshasterminated or

due to a failure in node. Now if quota is enabled, ’file’

will be accounted 5MB, this 5MB is added to ’/dir’ and

’/’ but ’/dir’ and ’/’ already has 5MB accounted which

was not cleaned during cleanup and after adding 5MB the

quota usage becomes 10MB which makes

markeraccounting messy.. Hence as a solution to the

above problem, Quota versioning came intopicture.

D. QuotaVersioning

A version number is suffixed for all the quota xattrs.

This version number is specific to marker xlator (i.e)

when quota xattrs are requested by quotad/client, marker

will remove the version number which is suffixed in the

key before sending the response. Previously the xattr’s

were just

• ’trusted.glusterfs.quota.size’

• ’trusted.glusterfs.quota.limit-set’. Now we are

AN INSIGHT ABOUT GLUSTERFS AND ITS ENFORCEMENT TECHNIQUES

Indian J.Sci.Res. 17(2): 111 - 117, 2018

suffixing aversionnumberattheendwhichmakes,

• ’trusted.glusterfs.quota.size.<versionnumber>’

• ’trusted.glusterfs.quota.limit-set.<version

number>’ where version number starts from 1 and

keeps incrementing by 1 till N. The same concept

applies to the ’contri’ xattr aswell.

With this approach, every time quota is enabled the

xattr’s gets attached with a new number and is treated

like a

separatesession.Eventhoughtheproblemofmessingmarker

accounting is fixed, the previous xattrs are just left

without cleaning up, leaving extra space. This can be

fixed by checking up the version number in xattrs when

quota is enabled and if xattrs with older version number

exists, just cleanup them and then create new xattrs. Let’s

look on the projects being worked uponcurrently.

E. Techniques that Needs to be Enhanced

• PerformanceIssue-Currently,whenfilesaredistributed

across bricks, just for a lookup, currently we are

send- ing, from client->dht ->replica- >brick,

instead wecan activate one process on one brick,

which could increase

theperformance.Thisworkisunderprogress.

• Recursive Directories Problem in Enforcer - For

exam- ple: Consider the directory structure

/1/2/3/4/5/6/7/f1. One has to keep checking till the

root to checkthe limit and do the enforcement if it

exceeds andperform

accounting accordingly which could cause serious

per- formance problem. In quota, we always need to

crawl till the root to do the accurate enforcement.

This needs to be fixed from the scratch.

• Issue in Enforcing - When a brick is down, then

quotad, the client process do not get the aggregated

value and it instead sends zero, and the write can

happen more than the limit. Say, there are two

bricks, b1 and b2, brick b1 has size 10GB written

and the limit set on b1 is 15GB but b1 went down,

so brick b2 thinks that 15GB is free in brick b1 and

tries writing 15GB which could cause a problem

inenforcement.

V. Conclusion

The Gluster file system is a revolutionary step forward

in data management on every axis and in every

dimension: absolute performance; scalability of

performance and capac- ity; manageability at scale; ease

of use; reduced cost of ac- quisition, implementation;

daily operation, and per-terabyte for any particular level

of desired redundancy or achieved- reliability. The

complete elimination of metadata is at the heart of many

of its fundamental advantages, including its remarkable

resilience, leading to its reduced risk of data loss or data

corruption down to conditional states near absolute zero

by statistical calculation or logical extrapolation. Also,

depending on the need, the features are exported to the

users.

Onesuchimportantfeatureasseeninthisarticle,isEnforcer.

Enforcer finds its usage in quite a lot of applications.It

majorly includes the cloud applications, banking sectors,

educational universities, scientific researches and

generically in places where sectors(or disk space) need to

be allocated to theusers.

As a whole, Gluster brings completely new technology

that delivers on a wholly new philosophy for storage: the

focus is on the compute host, not on the disk drives and

shelves. To completely precise the entire article, here is

the bottom line, ”Gluster - data management for the 21st

century, leaving the past behind and Enforcer, an

important component in GlusterFS, which will never let

you off limits

andisextremelyusefulfortherealtimeapplications.”

References

[1] Gluster Whitepaper, 2010, ”GlusterFS

Architecture”, [Online].

Available:http://download.gluster.com/pub/gluster/

documentation/Gluster Architecture.pdf.[Accessed:

22-Dec-2015].

[2] Dan Lambright, SA Summit, 2014, ”Erasure Codes

and Storage Tiers on Gluster”, [Online].Available:

http://www.slideshare.net/Red Hat Storage/erasure-

codes- and-storage-tiers-on-gluster. [Accessed: 19-

Nov-2015].

[3] Gluster Community, 2015, ”GlusterFS

Documentation”, [Online]. Available:

https://gluster.readthedocs.org/en/latest/Quick-

Start-Guide/Architecture/. [Accessed: 07-Oct-

2015].

[4] Gluster Community, 2010, ”Cloud Storage for the

Modern Data Center, An Introduction to Gluster

Architecture”, [Online]. Available:

http://moo.nac.uci.edu/ hjm/fs/An Introduction

ToGluster ArchitectureV7 110708.pdf. [Accessed:

12-Oct-2015]

[5] Vijay Bellur, Vault Conference, 2015, ”An

Introduction to GlusterFS”, [Online]. Available:

https://lwn.net/Articles/637437/. [Accessed: 20-

Jan-2016]

[6] ManikandanSelvaganesh, 2016, ”GlusterFS -

Quota”, [Online].

Available:https://manikandanselvaganesh.wordpres

s.com/. [Accessed: 10-Feb-2016]

