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ABSTRACT 

Now a days sequential processing is not sufficient for a large data computation in the area of computer science and 

technology. To solve the computation problem for large data, the necessity for high-performance calculation is growing day by day. 

Few common application where high-performance computing is used are Weather Forecasting, Quantum Physics, Climate 

Research, Heat Distribution Problem etc. An architectural framework has been proposed by NVIDIA to join the power of GPUs 

with CPUs to improve the execution time. GPUs were previously used only for Graphics Application like Computer games, 

Multimedia and graphics but now GPU has been used for high-performance computation work. This paper focuses on different 

techniques for Matrix multiplication operation. This paper performs the Matrix multiplication on resources like CPU, GPU 

(Shared and Non-shared).  Finally the results of execution time with CPU, Shared memory and Non- shared memory are compared 

and find that the Non – shared memory gives the better result for bulk data.  
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Parallel processing is the method of 

processing program instructions by dividing them into 

multiple small segments and executes that segments on 

multiple processors this results the minimum execution 

time. In the older version (Sequential) of computers, only 

one program can executed at a time. To solve the complex 

problem the sequential technique is not used, so the new 

technique to solve such problem is parallel technique. There 

are two types of program, one is computation intensive and 

the other is I/O intensive program. A computation intensive 

program consider only computation time and I/O intensive 

program consider only the time spend during the input and 

output. The interleaved execution of both (computation 

intensive and I/O intensive) programs together allowed in 

parallel processing. When the computer system starts an I/O 

operation, the system is in waiting state till the operation 

complete. During this time, the compute intensive program 

starts execution and the utilized the waiting time of the 

system. This cause in reduction of execution time. 

Matrices and matrix operations are widely used in 

mathematical modeling of various processes, phenomena, 

and systems. Matrix calculations are the basis of many 

scientific and engineering calculations few of them are 

Computational Mathematics, Physics, Economics etc. One 

of the fundamental building block for scientific computing 

is the Matrix multiplication and it is one of the most 

important approaches to understanding parallel 

programming in GPU [Djinevski et. al., 2013] [Sooknanan 

and Joshi, 2016]. 

The concurrent use of more than 

one processor to execute a program is an example of SIMD 

(single instruction stream and multiple data stream) process 

[Sartori and Kumar, 2013]. Generally, the parallel 

processing makes a program to execute quicker because of 

more CPUs are running [Shah and Patel, 2014] parallel. In 

practice, it is a lot difficult to divide a program in such a way 

that separate CPUs can execute different portions of the 

program without interfering with each other. 

A parallel computation engine is used in GPUs to 

carries out the complex computational problem in less time  

than it would have if same problem would have been 

executing on a single CPU [Cui et. al., 2009] [Shah, 2015]. 

GPUs have been previously utilized mainly for playing 

games or the application where large graphics resolutions 

are required. Now GPU stepped into the fields that need 

high-performance computation. Fields such as Medical 

Image, Weather forecasting, and System of linear equations  

are some fields, where the systems require the 

high-performance computation to use the possible power of 

GPUs by which system solve the existing and current 

problems. 

 CUDA is a library provided by NVIDIA, it 

provides extended functionalities in C language by adding 

CUDA specific functions. This paper shows the different 

optimization techniques of matrix multiplication [Ohshima 

et. al., 2006] using CPU, matrix multiplication on GPU 

using Shared and Non-Shared memory which increases 
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floating portion  for optimizing a N*N size matrix. N*N 

matrix means having N rows and N columns. 

GPU and CUDA 

 Compute Unified Device Architecture is a library 

provided by NVIDIA to execute processes in parallel 

manner [Ha and Han, 2013]. This is an application 

programming interface (API) to help communication 

between device and user. There are CUDA specific 

functions or methods defined which meant to run on CUDA 

library only. These are used along with C and C++ 

programming language. To convert a single processor 

specific program into CUDA capable programs the 

programmer needs to modify it accordingly. The CUDA 

program is generally divided into two parts: the main 

program executes in the CPU, whereas the parallel portion 

of the program is executed in GPU. This GPU part is called 

by the main program and data is sent to GPU for execution 

where the instructions are executed on the given data, after 

the calculation result is sent back to CPU 

[https://developer.nvidia.com]. 

GPU (Graphics Processing Unit) was primarily 

developed to fulfill the need of algorithms used in computer 

graphics. It has hundreds of cores which are able to execute 

multiple threads simultaneously. Later it was proposed that 

this technology can be useful for non-graphic process also if 

one can divide a single process into multiple threads and 

distribute them to multiple processors, the overall 

computation time can be reduced drastically. There are 

several types of memory present in the GPU [Liu and 

Vinter, 2014] [Zha and Sahni, 2013] [Barberis et. al., 2013] 

like device memory, shared memory, constant cache, 

texture cache, and registers [Lo et. al., 2013] [Salim et. al., 

2015] [Anh et. al., 2015] [Eberhardt and Hoemmen, 2016]. 

To manipulate data in this memory and to use the multiple 

cores to their programmers must write the CUDA programs 

very carefully. 

Types of CUDA Memory 

CUDA devices have different memory spaces, 

Figure 1 shows the memory organization and basic units of 

CUDA model. Global, local, texture, constant, shared and 

register memory. Two types of memory that actually reside 

on the GPU chip are register and shared memory. Local, 

Global, Constant, and Texture memory all reside off-chip. 

Local, Constant, and Texture are all cached. 

Shared Memory 

Data stored in shared memory is visible to all 

threads within that block and lasts for the duration of the 

block. This is invaluable because this type of memory 

allows for threads to communicate and share data between 

one another. Each block has a Shared memory which is 

shared by all its threads for communication within the block. 

it is around 50 to 100 MB. The hardware which used for this 

implementation has 49152 Bytes per block Shared Memory.  

Register 

This is fastest accessible memory present in the 

GPU.   Data stored in register memory is visible only to the 

thread that wrote it and lasts only for the lifetime of that 

thread. The hardware which used for this implementation 

has 32768   per block registers.  

Local Memory 

Local memory performs slower. It has the same 

scope rules as register memory. 

Global Memory 

Stored data in the global memory is visible to all 

threads within the application (including the host), and lasts 

for the duration of the host allocation. 

Constant memory is used for data that will not 

change over the course of a kernel execution and is read 

only. Using constant rather than global memory can reduce 

the required memory bandwidth, however, this performance 

gain can only be realized when a warp of threads read the 

same location. 

Texture Memory 

Texture memory is another variety of read-only 

memory on the device. When all reads in a warp are 

physically adjacent, using texture memory can reduce 

memory traffic and increase performance compared to 

global memory. 
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Figure 1: Memory model of the NVIDIA device [Source 

: NVIDIA web site] 

Important Units of CUDA Architecture 

A parallel computation used the abstraction of 

threads, blocks, and grids organized by CUDA which are - 

Thread 

The basic unit of CUDA architecture is a thread. 

Each thread runs on separate cores of multiprocessors and 

each thread can have a pair of Register memory for fast 

access. Threads are identified by threadIdx, which can be 

1D, 2D or 3D. Indexes are used by every thread to access 

elements in an array such that the collection of all thread 

cooperatively processes the entire set of data. 

Block 

A block is a logical unit which contains 

multidimensional thread. Block is the group of threads and 

is identified by blockIdx. The GPU is a collection of 

multiprocessors (MPs), [Bernabé et. al., 2013] [Soroushnia 

et. al., 2014] where each multiprocessor responsible for 

handles one or more blocks in a grid. A block is never 

divided across multiple processorss. 

 

 

 

Grid 

It is a group of blocks. A complete Grid is handled 

by a single GPU. There is no synchronization between the 

blocks. A Grid is started in the synchronous form in the 

CPU, but there can be multiple Grids running at the same 

time. 

PROBLEM IDENTIFICATION 

The main resources of a computer system are 

memory and processor. Memory and processor both plays 

an important role in high-performance computing, when 

large amount of data sets used as input. These data sets 

requires large amount of memory. A single system is not 

able to fulfill the memory requirements. So multiprocessor 

or multicomputer systems are used. Multiprocessor system 

uses the concepts of shared memory and multicomputer uses 

the concepts of distributed memory (Non – shared).  

When large amount of data sets used as input, 

calculation was not done in proper way, it takes garbage 

value. The main reason of the problem is cache storage 

organization and defect caused by mapping of elements of 

matrix on to single cache set instead of using the entire 

cache set. Over all degrade the performances of machine 

which increased execution time instead actual execution 

time. This paper presents a matrix multiplication problem 

on the GPU and CPU and comparing the execution time 

with the use of NVIDIA GeForce GT 525M machine.  

SPECIFICATION 

The testing platform requirements are as follows:- 

Hardware Specification 

Intel (R) core (TM) i3-2350M CPU @ 2.30 GHz 

System memory:- 4GB(installed memory) 

Testing Platform Specifications 

Operating System: -  windows7 (32-bit operating system) 

Software used: -   Microsoft visual studio 2010 

Language used: -        CUDA C 

Version of CUDA: -    CUDA Toolkit 6.5 

GPU Specification 

The table shows capabilities of a GPU which we have 

implemented and performing operation. 
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Table 1: NVIDIA GPU specification 

Device name NVIDIA GeForce GT 

525 M 

Compute capability 2.1 

Amount of global memory 1024 MB 

Number of µp 2 (48 CUDA Core) 

Number of streaming 

prospectors cores 

96 CUDA core 

Texture fill rate 9.6 billion/second 

Memory clock rate 900 MHz 

Constant memory amount 65536 bytes 

Processor clock tester 1200 MHz 

Interface memory DDR3 

Interface width of memory 128 bits 

Bandwidth of memory 28.8 GB/second 

Shared memory amount per 

block 

49152 bytes 

Registers available per block no. 32768 

Size of wrap 32 

No. of max. threads per µp 1536 

No. of threads per block max. 1024 

Dimension size of a thread 

block<x,y,z> max. 

1024, 1024, 64 

Dimension size of a grid 

size<x,y,z> max. 

65535, 65535, 

s65535 

Texture alignment 512 bytes 

Max memory pitch 2147483647 bytes 

METHODOLOGY 

In this paper the matrix of different size has been 

stored in file and this file has been used as input. The 

algorithm [Tiwari et. al., 2015] is as given below: - 

Step 1. Input the file of  matrix of different size to CPU 

Step 2. The time recorder starts (ts) 

Step 3. CPU sends matrix data to GPU 

Step 4. GPU receives the data and operation  

Step 5. GPU distributes these among threads with scatter 

function. 

Step 6. GPU performs their operations in  parallel    

Step 7. GPU collects the processed data with gather 

function. 

Step 8. GPU returns the processed data to CPU 

Step 9. CPU collects the processed data and produce the 

Result 

Step 10. The time recorder stops (te) 

The total elapsed time includes the computation 

time(tcomp) as well as total communication time (tcomm)  

which is calculated by :  

Elapsed time =  te - ts msec. 

Here communication time is the time to spend in 

communication of data and computation time is the time to 

spend in calculation of data. 

RESULTS 

All the matrix multiplication operations are 

performed on predefined parameters as present in Table 1 

and got the results which are tabulated in Table 2 and, 

Figure 2 shows the graphical view for the performance of 

Matrix Multiplication operation executed for many time and 

taken an average value for particular sets of all set of N*N 

size matrices. 

From Figure 2, observe that when matrix size is 

small, the execution time for matrix multiplication problem 

on the GPU is more than that of execution time taken by 

CPU, but when we increase the size of the matrix, execution 

time  taken by CPU is more than the time taken by GPU. The 

execution time of one or both parallel techniques is less than 

other, known as a non-shared implementation technique, 

and the other is known as shared memory tile 

implementation technique. The reason for time variation 

between CPU and GPU is data set transfer from CPU to 

GPU and then the resulting data transfer from GPU to CPU 

is considerable time as compared to the total execution time. 

When a small set of data take as input values for 

multiplication on GPU, the multiprocessor spends more 

time in transfer data compare to the computation time, 

meanwhile, the CPU can compute the result in less time for 

the small data set.  

Table 2: CPU and GPU Average Execution Time 

S. 

No. 

Size of 

matrix 

CPU 

Time 

(ms) 

Non-shared 

memory 

GPU Time 

(ms) 

Shared 

memory 

GPU Time 

(ms) 

1 4*4 0.0026 0.0088 0.0114 

2 8*8 0.004 0.0104 0.016356 

3 16*16 0.023 0.013702 0.0196492 

4 32*32 0.1442 0.0264908 0.0318104 

5 64*64 0.424 0.12144 0.155468 

6 128*128 2.337 0.75162 1.1218 

7 256*256 6.748 2.8682 3.1012 
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Figure 2:  Comparison of Average Execution Time 

taken by CPU and GPU for N*N Matrix 

S. 

No. 

Size of 

matrix 

Non-shared 

memory GPU 

Time / CPU 

Time (Speedup) 

(Speedup) = 

Shared memory 

GPU Time / 

CPU Time 

1 4*4 3.38 4.38 

2 8*8 2.6 4.089 

3 16*16 0.5957 0.8543 

4 32*32 0.1837 0.2206 

5 64*64 0.2864 0.3667 

6 128*128 0.3216 0.48 

7 256*256 0.425 0.4596 

 

 

Figure 3: Comparison Chart  

CONCLUSION 

The performance is comparing between NVIDIA 

GeForce GT525M and Intel core processor in terms of 

execution time by using multiple techniques i.e. Simple 

Matrix Multiplication on Intel core processor (CPU), 

Non-shared memory Matrix Multiplication and Shared 

memory Tile Matrix Multiplication on NVIDIA GeForce 

GPU. Above results show the simulation for Matrix 

Multiplication problem on both the environment and 

obtained the results which are discussed and analyzed in the 

previous section.  

In figure 3 the result shows that when the size of 

the matrix increases then the performance of non-shared 

parallel matrix multiplication technique is better than the 

shared memory matrix multiplication on GPU. The 

computation time for shared memory technique is more than 

the non-shared matrix multiplication for all data set in this 

device. In general the shared memory program has less 

elapsed time than the elapse time in non-shared program. 

But using shared memory does not necessarily reduce the 

processing time, and this much depends on the GPU 

architecture. As  when system compare the results of shared 

and non-shared technique, our GPU device perform better 

in non-shared memory than the shared memory technique.  
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