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Abstract:-The multi-step NN framework is motivated by applications that entail expensive distance computations. 
Specifically, let DST(Q, P) be the actual distance between a query Q and a data point P.DB. The applicability of the multi-
step framework rests on the existence of a filter distance metric dst, which is cheap to evaluate and satisfies the lower 
bounding property, i.e., for every possible Q and P: dst(Q, P) Š DST(Q, P).Assuming that DB is indexed by an R*-tree, 
themulti-step kNN algorithm first retrieves the k Euclidean NNs of Q using an incremental algorithm. These points are 
inserted into a result set RS, and their network (DST) distances are computed. Let DSTmax be the network distance1 
between Q and its current kth NN Pk. The next Euclidean NN P is then retrieved. As long as dst(Q, P) <DSTmax, the 
algorithm computes DST(Q, P) and compares it against DSTmax. If DST(Q, P) <DSTmax, P is inserted into RS, the 
previous Pk is expunged, and DSTmax is updated. 
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I. High-DimensionalSimilaritySearchUsingMulti- 

StepkNN 

Several applications including Image, Medical, Time 
Series and Document Databases involve high-dimensional 
data. Similarity retrieval in these applications based on 
low- dimensional indexes, such as the R*-Tree [1], is very 
expensive due to the dimensionality curse. Specifically, 
even for moderate dimensionality (i.e., D = 20) a 
sequential scan that computes DST(Q, P) for every P . 
DB is usually cheaper than conventional NN algorithms 
using the index. Consequently, numerous specialized 
structures have been proposed for exact [8] and 
approximate [22] kNN search in high dimensions. 

Itfollows a different approach, combining multi-step 
search with a dimensionality reduction technique that 
exhibits the lower bounding property. Specifically, each 
record P  DB is mapped to a low-dimensional 
representation p in d dimensions (d << D). The resulting d-
dimensional dataset db is indexed by an R*- tree, or any 
low-dimensional index. The query Q is also transformed to 
a d-dimensional point q and processed using a multi-step 
method. For instance, in the algorithm of Figure 1, DST 
(resp. dst) computations involve high (low) dimensional 
points. The index prunes most nodes and records using the 
cheap, filter (dst) distances, whereas the expensive DST 
computations are necessary only for the points in result 
RSand false hit setFH.Their effectiveness is measured by 
the number of records that they can prune using only the 
low dimensional representations (i.e., it is inversely 
proportional to the cardinality of FH). Ding et al 
experimentally compare various techniques, concluding 
that their effectiveness depends on the data characteristics. 

II. Authenticated QueryProcessing 

In authenticated query processing, a server maintains a 

dataset DB signed by a trusted authority (e.g., the data 
owner, a notarization service). The signature sig is usually 
based on a public-key cryptosystem (e.g., RSA [16]). The 
server receives and processes queries from clients. Each 
query returns a result set RS . DB that satisfies certain 
predicates. Moreover, the client must be able to establish 
that RS is correct, i.e., that it contains all records of DB 
that satisfy the query conditions, and that these records 
have not been modified by the server or another entity. 
Since sig 

capturestheentireDB(includingrecordsnotinthequeryresult), 
in addition to RS, the server returns a verification object 
(VO). Given the VO, the client can verify RS based on sig 
and the signer’s public key. 

A. TheMR-Tree 

The MR-Tree [23] combines the concepts of the MH-Tree 
and the R*-Tree . A leaf node contains entries elf of the 
form (pgP, P), where P is an indexed point, and pgPis a 
pointer to the page accommodating the record of P.  

Upon receiving a range query QR, the server performs a 
depth-first traversal of the MR-Tree, using the algorithm  
to retrieve the set RS of points in QR. Furthermore, it 
generates a VOR that contains: (i) all the points outside 
QR that reside in a leaf MBR overlapping QR, and (ii) a 
pair (MBRN, hN), for every node N pruned during query 
processing. In the example of Figure 2, given the shaded 
range QR, we have RS = {P2, P3, P7}, and VOR = [[[P1, 
result, result] (MBRN5, hN5)] [[result, P8, P9] (MBRN7, 
hN7 )]]. The token result signifies an object in RS 
according to the order of appearance in RS. For instance, 
[P1, result, result] corresponds to node N4; the first 
occurrence of result refers to P2, and the second one to P3. 
In order to distinguish the type of each element in the VO, 
MR_Range includes a header prior to each token, digest, 
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and point in the VO. This header consumes 3 bits, which 
suffice to represent 8 different element types. For 
simplicity, we omit the headers in our presentation since 
the element type is implied by its name. 

The verification process of the client is also identical to the 
one performed for range queries. However, as an 
adaptation of the R*-tree, the MR-Tree also suffers from 
the dimensionality curse. Therefore, the application of the 
afore-mentioned method on high dimensional data has 
very limited pruning power. Specifically, for numerous 
dimensions, nearly all leaf nodes must be visited (leading 
to high server cost); consequently, the majority of points 
are inserted in the VO (leading to high communication 
overhead); finally, the client has to verify almost the 
entiredataset. 

III. Authenticated Multi-StepNN 

It has been proven effective in non-authenticated similarity 
retrieval, especially for numerous (i.e., D > 100) 
dimensions, where even high-dimensional indexes fail3; 
(ii) it can be extended to authenticated query processing 
based on a low dimensional ADS, i.e., the MR-Tree, 
whereas, currently there are no authenticated high-
dimensional structures; (iii) it is general, i.e., it can also be 
applied when the expensive distance computations are due 
to the nature of the distance definition (e.g., network 
distance), rather than the data dimensionality (in which 
case D = d). 

A. False Hit Reduction Algorithm 

Ideally, for each false hit P, ReduceFH should derive the 
subset SP with the minimum length. Intuitively, this task is 
at least as difficult as the Knapsack Problem; we need to 
select a subset of items (SP of P values), each assigned a 
cost (communication overhead) and a weight (distance 
DST(SQ, SP)), such that the sum of costs is minimized and 
the sum of weights exceeds DSTmax. An additional 
complication is that, when we select one item, the cost of 
the rest changes (i.e., unlike knapsack, where the cost is 
fixed). 

B. DistributedServers 

We assume a client-server architecture, where the server 
maintains data signed by a trusted authority. There are two 
versions of the signed dataset: a D-dimensional DB and a 
d- dimensional db (d <<D), produced from DB using any 
dimensionality reduction technique that satisfies the lower 
bounding property. For instance, DB may be a set of high- 
dimensional time series and db their low dimensional 
representations obtained by DFT. There is a single 
signature sig, generated by a public key cryptosystem (e.g., 
RSA), that captures both DB and db. DST (dst) refers to 
the distance metric used in the D(d)-dimensional space. 
For ease of illustration, we use Euclidean distance for both 
the DST and dst metrics. Nevertheless, the proposed 

techniques are independent of these metrics, as well as of 
the underlying dimensionality reduction technique. 

Next, we compare SD-AMN and ID-AMN considering 
that the database is horizontally partitioned over m servers. 
Recall that the methods first collect distance information, 
based on which they determine the range that contains the 
result. The NNs and the false hits are obtained during the 
verification of this range, which is identical in SD-AMN 
and ID-AMN. Thus, when measuring the communication 
cost, we focus on their differences, which regard the 
transmission of query points and the distance information. 
The CPU overhead is based again on elementary distance 
computations. Finally, due to the identical verification 
process, the client cost is similar, and the corresponding 
experiments are omitted. 

It shows the communication cost as a function of the 
number m of servers. Since we do not count the common 
data transmissions, the dominant factor is the number of 
high-dimensional query (Q) transmissions. SD- AMN 
sends Q to all servers yielding an overhead of D.m 
values. On the other hand, ID-AMN transmits Q only to 
candidate servers. In the best case, all results may be found 
in a single server, and the rest are eliminated using the dst 
bound; in the worst case, Q must be sent to all servers, if 
they all constitute false candidates. In general, the number 
of eliminated servers increases with their total number, 
leading to the savings of ID-AMN.Figure 22 compares the 
two methods on elementary distance computations at the 
server versus m. The retrieval of a kNN set involves a 
number of computations linear to (k+|FH|).(d+D) because 
the distances of all results and false hits must be evaluated 
in both low and high-dimensional spaces. In SD-AMN, 
each of the m servers must retrieve the k NNs; thus, the 
total cost increases linearly with both m and k. In ID-AMN 
a server has to perform a number of computations that is 
proportional to its contribution ki (Šk) in the result set. The 
value of m affects the number of computations only 
indirectly, by increasing the false candidates. In general, 
ID-AMN clearly outperforms SD- AMN in all settings. 

C. AMN In DistributedServers  

In this setting we assume that the database is 

horizontallysuccessfully, and for every point P in each FHi 

it holds DST(Q, P) Š DSTmax, then the client is assured 
that RS is correct.Partitioned  and distributed over m (>1) 

servers. Specifically, each server Si stores a subset DBi 

such that: DB1 . ... DBm= DB and DBi . DBj = ., . 1 

Š i, j Š m. In addition, Si maintains an MR-Tree on the 

corresponding reduced data set dbi, which is signed by a 

signature sigi.A query result comprises the kNNs over all 
servers. Minimization ofClient transmissions (of the high-
dimensional data) is particularlyimportant for this setting, 
especially for large values of m. SD-AMN (short for 
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simple distributed AMN), used as a benchmark in our 
experimental evaluation. 

D. Simple DistributedAMN 

In SD-AMN, a client sends its kNN query Q to all servers. 

Each server Si retrieves the partial result RSi on  the  local 

DBi using the conventional multi-step algorithm  and 

generates a vector kDSTi with the distance values of the 

kNN set RSi in Si. The client collects the vectors from the 

servers and determines the global kthnearest  
distanceDSTmaxover all m.kcollected distances. Then, it 
transmits a 

rangeqR=(q,DSTmax).EachserverSiexecutesqRusingitsMR

-Tree and returns VO i, RSi and FHi. VO i has the same. 

E. Incremental DistributedAMN 

Lines 18-20 simply verify the range qR= (q, DSTmax) in 

eachserver. All the result points (RSi), as well as false hits 

(FHi) are transmitted during this step. The client generates 

the final result RS locally from the union of all RSi. C-
AMN can be applied to reduce the size of false hits. Note 
that Line 12 may call get_next_ smallest_DSTmultiple 

times on the same server Si. In this case, the client needs to 
transmit the full query Q only the first time; for subsequent 
requests, it suffices to send the query ID.SD-AMN is 
optimal in terms of high-dimensionalpoint transmissions 
because the client receives D-dimensional representations 
only for points in qR. All these points (results and false 
hits) are necessary to establish correctness anyway. 
However, it must transmit Q to all servers. Moreover, each 

server Si has to compute RSi although none of the points of 

RSi may participate in the global result (e.g., S4 in Figure 
12). ID-AMN avoids these problems by gradually 
eliminating servers that cannot contribute results. 
Specifically, ID-AMN incrementally retrieves distance 
values from servers to compute the final  DSTmax, 
postponing local NN computations at the servers until they 
are required. We present the pseudo code of ID-AMN (at 
the client) in Figure 14, and explain its functionality by 
continuing the example of Figure 13 (k =3). 

The while loop (Lines 8-17) starts by eliminating 
eachserver such that DST i Š DSTmax (initially DST i = 
dst i). For instance, DST 4 = 7 Š DSTmax = 5, and the 
client discards S4 without sending Q. Since the subsequent 
verification of S4 does not require Q either, there is no 
transmission of high- dimensional data (query, or points) 
between the client and S4. Line 11 selects the candidate 
server Si with  the minimum DST i, and asks for the 
distance DSTnew of the next NN in Si. If DSTnew Š 
DSTmax, Si is purged. Assuming that the selected server is 
S 3 (DST 3 = DST 2 = 2), then DST(Q, P3 ) = 5. 

Algorithm ID-AMN_client(Q, k) 

1. For each serverSi 

2. SetCandidate[i]=1; 

3. (dsti, kdsti,)= get_ smallest_dist(q,Si) 

4. DSTi =dsti 

5. Let Sj be the server with the minimumkdstj 

6. Set vector kDST= get_k_smallest_DSTs(Q,Sj) 

7. Set DSTmax= maximum value in kDST; 
SetCandidate[j]=0 

8. While there are candidateservers 

9. For each serverSi 

10. If DSTi Š DSTmax, SetCandidate[i]=0 

11. Select candidate server Si with minimumDSTi 

12. Set DSTnew= get_next_ smallest_DST(Q, Si) 

from serverSi 

13. If DSTnew/ DSTmax, Set Candidate[i]=0 

14. Else // DSTnew<DSTmax 

15. Insert DSTnewinto kDST 

16. Set DSTmax= maximum value in kDST; 

17. DSTi =DSTnew 

18. For each serverSi 

19. (VO i, RSi, FHi) = MR_Range((q, DSTmax),rooti) 

20. Verify(VO i) and incorporate RSi intoRS 

F. Incremental distributed AMN (client) 

Proof of Correctness. The client obtains all results and 
false hits at the end through the verifiable range (Lines 18- 
20). As shown in the proof SD-AMN, any DST 
misreporting that leads to the computation of a DST’max. 
DSTmax can be detected by the client. Let us now 
consider that some server Si sends false dsti and kdsti. The 
value of kdsti is only used as an estimator for the selection 
of the initial server (Line 5), and it only affects the 
efficiency (but not the correctness) of the algorithm. For 
instance, if S3 reports kdst3 = 1 (instead of 9), it will 
become the initial server, increasing the communication 
overhead (S4 cannot be immediately eliminated), without 
however altering the result. Moreover, as discussed in 
Section 5.1, any false distance smaller than DSTmax will 
be caught by the verification. Similarly, dsti is used as a 
lower bound for DSTi. If Si sends a value of dsti lower 
than the actual one, itcan only be selected earlier than 
necessary during the while loop without affecting 
correctness. On the other hand, if the transmitted dsti 
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exceeds the actual one, (i) Si is selected later during the 
loop, or (ii) eliminated altogether if the reported dsti 
exceeds DSTmax. Case (i) only affects the efficiency, 
whereas case (ii) is detected during the verification 
because Si has to send objects within the range qR = (q, 
DSTmax). 

IV. ExperimentalEvaluation 

We use four real datasets that capture different 
combinations of dimensionality D, cardinality N, and 
application domain: (i) Corel (D = 64, N = 68040), (ii) 
Chlorine (D = 128, N = 4310), (iii) Stock (D= 512, N = 
10000),and (iv) Mallat(D = 1024, N = 2400). Corel 5 can 
be downloaded from archive.ics.uci.edu/ml/, while the rest 
are available at: 
www.cs.ucr.edu/~eamonn/time_series_data/. We decrease 
the dimensionality of each dataset using Chebyshev 
polynomials [4]. The value of d is a parameter with range 
[2, 12] and default value 8. Each reduced dataset is 
indexed by an MR-Tree using a page size of 4KB. Every 
digest is created by SHA-1 [12]. We assume that both DST 
and dstare based on the Euclidean distance. Section 6.1 
compares AMN and C-AMN considering a single server. 
In this section it  evaluates SD-AMN and ID-AMN 
assuming multiple servers. 

A. SingleServer 

The measures of interest are the communication overhead, 
and the CPU cost at the server and the client. We assess 
the communication overhead based on the verification 
information sent to the client. The transmission of the 
query and the result is omitted because it is necessary in 
any method. The CPU cost is measured in terms of the 
elementary distance computations. Specifically, D 
elementary computations are required to derive the 
Euclidean distance of two D-dimensional points. We 
exclude the I/O cost at the server because it is identical for 
both AMN and C-AMN (and similar to that of the 
conventional multi-step algorithm) since in any case, we 
have to retrieve the low dimensional NNs using the MR-
Tree. For each experiment we select a random data point 
as the query, and report the average results over 10 
queries. 

Specifically, the overhead is measured in Mbytes, 
assuming that each value consumes Sv=8 bytes (a double 
precision number) and each digest is Sh=20 bytes (typical 
size for SHA-1). We indicate the number |FH| of false hits 
below the x-axis. As d increases,|FH| drops because the 
reduced representation captures more information about 
the corresponding point. In all cases, C-AMN leads to a 
significant decline of the overhead. The savings grow with 
D, and exceed an order of magnitude for Mallat, because 
long series provide more optimizations opportunities. On 
the other hand, the gains decrease as d grows due to the 
smaller FH. In order to demonstrate the effect of the false 

hits, we include inside each column of the diagrams, the 
contribution of FH as a percentage of the total overhead. 
For high D and low d, FH constitutes the dominant factor, 
especially for AMN (e.g., at least 98% in Mallat), 
corroborating the importance of C- AMN. 

The absolute overhead is lower (in both AMN and C- 
AMN) for high values of d due to the decrease of |FH|. The 
exception is Corel, where the communication cost actually 
grows when d exceeds a threshold (8 for AMN, 4 for C- 
AMN). This is explained as follows. A typical record (i.e., 
image) in Corel has very low values (<0.005) on most 
(>60) dimensions, and relatively large values (>0.1) on the 
rest. Furthermore, the large values of different records 
usually concentrate on different dimensions. 
Dimensionality reduction using Chebyshev polynomials 
[4] captures effectively those important dimensions even 
for low d. Consequently, there is a small number of false 
hits (for d=2,|FH| . 0.28% of N, whereas in the other 
datasets |FH| is 50-75% of N). As d grows, |FH| does not 
drop significantly; on the other hand, the verification 
information transmitted to the client contains more 
boundary records and node MBRs, increasing the VO size. 

The server computations versus the number of required 
neighbors. The cost increases slightly with k, but similar to 
the effect is not as pronounced as that of d. Note that the 
diagrams do not include the I/O cost, which is identical to 
both methods. I/O operations normally dominate the 
processing overhead (since large records must be retrieved 
from the disk) and the performance difference of the two 
methods in terms of the overall cost diminishes. Moreover, 
the difference of C- AMN and AMN would decrease 
further (in Figures 3-4), if DST were based on a more 
expensive distance function than dst (e.g., DTW vs. 
Euclidean distance as in [10]) and applied the optimization 
. This is because ReduceFH would entail only cheap dst 
computations, which would be dominated by the more 
expensive DST calculations, common in both methods. 

The number of elementary distance computations at the 
client as a function of d. C-AMN leads to significant gains, 
sometimes dropping the processing cost by more than an 
order of magnitude. Since this cost is proportional to the 
amount of data received by the client, the diagrams are co-
related to those in Figure 6; accordingly, the benefits of C-
AMN are more significant for settings that involve large 
values of D, and |FH|. Similar to Figures 2 and 4, the CPU 
cost increases with k, but the impact of k is rather small. 

Summarizing, compared to AMN, D-AMN for an 
increasing number of modern database applications, 
efficient support of similarity search becomes an important 
task. Along with the complexity of the objects such as 
images, molecules and mechanical parts, also the 
complexity of the similarity models increases more and 
more. Whereas algorithms that are directly based on 
indexes work well for simple medium-dimensional 
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similarity distance functions, they do not meet the 
efficiency requirements of complex high-dimensional and 
adaptable distance functions. The use of a multi-step query 
processing strategy is recommended in the cases of high 
dimensional and adaptable distance functions because the 
number of candidates which are produced in the filter step 
and exactly evaluated in the refinement step is a 
fundamental efficiency parameter. After revealing the 
strong performance shortcomings of the state-of-the-art 
algorithm for k-nearest neighbor search, a novel multi-step 
algorithm which is guaranteed to produce the minimum 
number of candidates.  

V. Conclusion 

The importance of authenticated query processing 
increases with the amount of information available at 
sources that are untrustworthy, unreliable, or simply 
unfamiliar. This is the first work addressing authenticated 
similarity retrieval from such sources using the multi-step 
kNN framework. We show that a direct integration of 
optimal NN search with an authenticated data structure 
incurs excessive communication overhead. Thus, we 
develop C-AMN, a technique that addresses the 
communication-specific aspects of NN, and minimizes the 
transmission overhead and verification effort of the clients. 
Furthermore, we propose ID-AMN, which retrieves 
distance information from distributed servers, eliminating 
those that cannot contribute results. 
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