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ABSTRACT 

 We study amplitude nth-power squeezing of the Hermitian operator, θ+θ≡
θ

sinYcosYY
)n(

2
)n(

1
)n(

, of light initially in 

coherent state interacting with a non-absorbing non-linear Kerr medium, modelled as an anharmonic oscillator, described by well-

known interaction Hamiltonian, 2

2
1 aa H

2+λ= . Here, the parameter λ  is proportional to cubic non-linearity )3(χ of the nonlinear 

medium, a and 
+a  are, respectively, the annihilation and creation operators for the interacting field,

n)n(
2

)n(
1 aiYY =+ , and θθθθ is 

an arbitrary angle. We find almost complete amplitude nth-power squeezing in such interaction for very small interaction time and 

very large intensity of interacting light and optimize it by an analytic estimation assuming realistic values of Kerr non-linearity and 

intensity of interacting coherent light. We obtain a scaling law for optimal amplitude nth-power squeezing in terms of a 

dimensionless interaction time tλ≡τ , Kerr parameter r, which is product of τ  and the average number of photons and power of 
squeezing n. The validity of the obtained scaling law has been checked numerically and analytically in the optical domain of 

realistic values of Kerr non-linearity and intensity of interacting light. 
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 In quantum optics, much attention is being paid 

to non-classical states (Walls, 1983; Dodonov, 2002) of 

light, due to their applications in quantum information 

theory such as communication, quantum teleportation, 

dense coding and quantum cryptography. Squeezing, a 

well-known non-classical effect, has been generalized 

(Hong et. al., 1985; Hillery, 1987; Zhang et. al., 1990; 

Prakash et. al., 2002) to case of several variables. Zhang 

et al (Zhang et. al., 1990) generalized amplitude-squared 

squeezing defined by Hillery (Hillery, 1987) to amplitude 

n
th
-power squeezing. According to Zhang et al definition, 

a state ψ  is said to be amplitude n
th
-power squeezed for 

the operator,     

θ+θ≡
θ

sinYcosYY )n(
2

)n(
1

)n(
,                                    (1) 

 if the n
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-order moment of 
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 and θ is an 

arbitrary angle. 

Many schemes like four-wave mixing, resonance 

fluorescence, the use of free electron laser, cavities, 

harmonic generation, parametric amplification and J C 

model have been proposed for generation of non-classical 

states. However, the interaction of coherent light with a 

non-absorbing non-linear Kerr medium modelled as 

anharmonic oscillator with well-known interacting 

Hamiltonian (Maker et. al., 1964), 

)1N(N 
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 Has been paid to much attention because of the 

exactly solvable model for generation of non-classical 

states, which exhibits significant squeezing. Here 

aaN += , a and 
+a  are, respectively, the annihilation  

and creation operators for the interacting field and the 

parameter λ  is proportional to cubic non-linearity )3(χ  

of the nonlinear medium. Several authors (Millburn, 

1986; Gerry et. al., 1987; Buzek, 1989;  Si-De Du et. al., 

1992) have studied the non-classical effects in such 

interaction and reported almost complete squeezing and 

amplitude n
th
-power squeezing for very small interaction 

time and very large intensity of the interaction light. 

Recently Bajer et.al. (Bajer et.al., 2002) and Prakash 

et.al. (Prakash et.al., 2008) respectively, have studied the 

problem of optimization of squeezing and amplitude-

squared squeezing in such interaction and reported scaling 
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laws for optimal squeezing and amplitude-squared 

squeezing using an analytic estimation in the region of 

short interaction time and high optical power. In this 

paper we study amplitude n
th
-power squeezing in such 

interaction and generalize the results for arbitrary power 

n. We optimize amplitude n
th
-power squeezing by an 

analytic estimation assuming high intensity of interacting 

light and realistic values of Kerr non-linearity and obtain 

a scaling law for optimal amplitude n
th
-power squeezing. 

The validity of the obtained scaling law has been checked 

numerically and analytically in the optical domain of 

realistic values of Kerr non-linearity and intensity of 

interacting light.  

AMPLITUDE n
th 
-POWER SQUEEZING IN 

INTERACTION OF COHERENT STATE 

WITH A NON-ABSORBING NON-LINEAR 

KERR MEDIUM   

It is useful to define amplitude n
th
-power 

squeezing defined (Eq. (2)) earlier in another form, by the 

parameter 

ψψ

ψψ−ψ∆ψ
=

π
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 with –1≤ n,Sθ < 0 for amplitude n
th
-power 

squeezed state. For the analytic estimation of optimal 

amplitude n
th
-power squeezing, we minimize n,Sθ  with 

respect to all possible phasesθ. If for minimum of 

n,Sθ with respect to all possible phasesθ, we 

have 0
d

dS n, =
θ
θ

, which gives 
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 Using Eqs. (4) and (5), we finally get amplitude 

n
th
-power squeezing factor nP , which is minimum of 

n,Sθ  with respect to all possible phases θ as 
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It is further useful to use principal amplitude n
th
-

power squeezing factor Sn that takes values between 0 and 

1 for amplitude n
th
-power squeezing and for present case 

we can write nn P1S += , with 0 < nS  <1 for amplitude 

n
th
-power squeezed state. 

If we consider the interaction system with 

interaction Hamiltonian H defined by Eq. (3) and 

interaction light in coherent state defined [9] by  

n
!n

)exp(
0n

n
2

2
1 ∑

α
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∞

=
=  D(α) 0 ,                 (7) 

 where αθ=α  i
Ae , n  is the occupation number 

and )aa exp()(D ∗+ α−α=α  is the displacement 

operator, then in interaction picture, we have the Kerr 

state at time t,  

α=α=ψ
τ

−−
2
)NN(i 2

e)t(U .                                (8) 

 Here )t H iexp()t(U −=  is the time evolution 

operator, and τ=λ t , the dimensionless interaction time. 

Now we have for the Kerr state, 

  2

2in2
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ττ− −−−αα=ψψ ,                      (9) 
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n
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,                                                 (10) 

and therefore finally we have amplitude n
th
-power 

squeezing parameter, 

               

∑ α

−−−
α

+=

=

−

τ−−−ατ−−−α−τα τ−τ−

n

1r

)rn(22
r

n

)nn(i)1e(2)nn2(i)1e()1n(cos2
n2

n

!r)C(
4

1

eee1
2

1S

][
2in22in222

.                      (11) 

We get finally amplitude n
th
-power squeezing parameter, 
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where 

)nsin2n2sinn(
222 τα−τα+τ=Φ . Dependence of 

the amplitude n
th
-power squeezing parameter Sn on 

interaction time τ  at the amplitude 5=α  of interacting 

field for some values of power n is shown in the Fig.1.    
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Figure 1:  Variation of the squeezing parameter Sn 

with τ  for some values of n at 5=α . 
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Figure 2:  Variation of the squeezing parameter Sn 

with τ  for n=3 at some values of α . 

 

 It should be noted from the figure that amplitude 

n
th
-power squeezing in such interaction decreases with 

power n. Dependence of the amplitude n
th
-power 

squeezing parameter Sn (e.g. n=3) on interaction time τ  
for some values of the amplitude α  of interacting field 

has been shown in Fig.2. It should be noted that amplitude 

n
th
-power squeezing appears significant when we decrease 

interaction time τ  and increase the amplitude α  of the 

interacting field. 

AMPLITUDE n
th
-POWER SQUEEZING 

APPROXIMATION AND SCALING 

FORMULA 

In the experiments, dimensionless interaction 

time τ  is fixed by the length of fiber and hence in such 
interaction the amplitude n

th
-power squeezing can be 

controlled simply by adjusting the amplitude α of 

interacting field. For this reason the Kerr parameter r 

defined by τα= 2
r , is usually used to study the non-

classical effects in such interaction. Hence we study 

amplitude n
th
-power squeezing parameter S(r, τ ) in its 

dependence on the Kerr parameter r instead of its 

dependence on the amplitude α  of the interacting field 

for the fixed interaction time τ . In general the value of 
Kerr non-linearity is usually very small and practically the 

dimensionless interaction time of the order of 
610−=τ  

and r 1≈  (for intense laser) can be reached in optical 

domain (Bachor: A Guide to Experiments in Quantum 

Optics, 1998).  In Fig. 3 we show the dependence of 

amplitude n
th
-power squeezing parameter Sn (r, τ ) on the 

Kerr parameter r for some fixed values of interaction 

time τ .  The regular dependence of (Sn)min (the minimum 
value of amplitude n

th
-power squeezing parameter) on the 

interaction time τ may be noted form Fig. 3 indicates the 

existence of a scaling law of the form (Sn)min
γ≈ minr , for 

the optimal amplitude n
th
-power squeezing in such 

interaction, where rmin is the minimum value of r at which 

Sn(r, τ ) is minimum for a fixed interaction time τ .     
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Figure 3: Variation of the squeezing parameter Sn 

with Kerr parameter r for some values τ  for n=3 at 
5=α (on log-log scale). 
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Figure 4: Comparison of the approximation n'S  with 

Sn as a function of r at 
210−=τ . 
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Figure 5: Comparison of the approximation n'S  

with Sn as a function of r  at 
310−=τ . 

Now in the limit, τ  << 1, Eq. (12) gives,  

1r

)2n3nr3(nr
1rr2-rn-r21SS
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22
2322
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++τ
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to the first order in τ  . Accuracy of the approximation 
(13) in comparison with exact values of Sn for two 

different values of τ  can be seen in Fig. 4 and Fig. 5.  
The figures show that the approximation 'S  can be used to 

estimate the optimal amplitude n
th
-power squeezing with 

a good precision. If we expand Eq. (13) in powers of 
1r −  

and keep the smallest order terms in 
1r−  we obtain,  

2

32
nn

r 4

1
  r n2SS +τ=′′≅′ .                                    (14) 

This gives 

5/22
minn )n12(

12

5
)S( τ=′′ ,                                     (15) 

at 
5/12

min )n12(r −τ=′ . We see that in the limit τ  << 1, 

the minimum value minn )S( ′′  of nS ′′  is proportional to the 
(2/5)

th
 power of the interaction time τ  and it occurs at the 

Kerr parameter minr′ which is proportional to the (-1/5)
th
 

power of interaction time τ . It may be noted from 
Eq.(15) that the very same scaling laws but with different 

numerical coefficients have been obtained for normal 

squeezing by Bajer et.al..(Bajer et.al., 2002) and 

amplitude-squared squeezing by Prakash et. al. (Prakash 

et.al., 2008). 

Table 1: Several numerical values of (Sn)min  and the corresponding minr  obtained at the scaled interaction time and 

their estimations minn )S( ′′  and minr ′ for n=3. 
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τ  (Sn)min minn )S( ′′  minr  minr′  

110−  0.8732 1.0793 0.32 0.62 

210−  0.4329 0.4297 0.72 0.98 

310−  0.1761 0.1711 1.38 1.56 

410−  0.0693 0.0681 2.36 2.47 

510−  0.0273 0.0271 3.85 3.92 

610−  0.0088 0.0108 6.60 6.21 

Some numerical values of (Sn )min and minn )S( ′′  for 

different values of dimensionless interaction time τ  are 
shown in Table 1. From the table it may be noted that in 

the region of realistic values of r and dimensionless 

interaction time τ , the approximation may be used with 
good precision.  

CONCLUSION 

We have analyzed amplitude n
th
-power 

squeezing of light initially in coherent state interacting 

with a non-absorbing non-linear Kerr medium, modelled 

as an anharmonic oscillator modelled as an anharmonic 

oscillator, described by well-known interaction 

Hamiltonian, 2

2
1 aa H

2+λ= . Here, the parameter λ  is 

proportional to cubic non-linearity 
)3(χ of the nonlinear 

medium, a and 
+a  are, respectively, the annihilation and 

creation operators for the interacting field. We found 

almost complete amplitude n
th
-power squeezing in such 

interaction for very small interaction time and very large 

intensity of interacting light. We have optimized it by an 

analytic estimation assuming realistic values of Kerr non-

linearity and intensity of interacting coherent light and 

obtained a scaling law for optimal amplitude n
th
-power 

squeezing in terms of a dimensionless interaction 

time tλ≡τ , Kerr parameter r, which is product of τ  and 
the average number of photons and power of squeezing n. 

The validity of the obtained scaling law has been checked 

numerically and analytically in the optical domain of 

realistic values of Kerr non-linearity and intensity of 

interacting light. 
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