
Indian J.Sci.Res. 17(2): 550 - 555, 2018 ISSN: 0976-2876 (Print)

 ISSN: 2250-0138(Online)

1Corresponding Author

COMPUTING SEEDS FOR LFSR-BASED TEST GENERATION FROM NONTEST CUBES

Vigneshwar Mohan

Department of Communication and Networking, Trichy Engineering College, Trichy

Abstract- In test data compression methods that are based on the use of a linear-feedback shift register, a seed that produces

a test for a target fault is computed based on a test cube for the fault. With a given LFSR, a seed may not exist for a given

test cube, even though a seed may exist for a different test cube that detects the same fault. This issue is addressed in this

brief by computing seeds for LFSR-based test generation without using test cubes. Instead, the procedure described in this

brief is based on the use of nontest cubes. A nontest cube for a fault must be avoided in any test or test cube for the fault in

order to allow the fault to be detected. Therefore, nontest cubes do not limit the ability of the procedure to compute seeds

with a given LFSR. Experimental results demonstrate the advantages that the use of nontest cubes provides, and the

associated computational cost.

Keywords—Linear-feedback shift register (LFSR)-based test generation, nontest cubes, scan circuits, test cubes, test data

compression.

I. Introduction

When test data compression is based on the use of a linear-

feedback shift register (LFSR), test cubes are used for

com- puting seeds for the LFSR [1]–[10]. Given a test

cube ci for a target fault fi, a seed si for the LFSR is

obtained by solving a set of linear equations that relate si

with the specified values of ci [1]. When si is loaded into

the LFSR, and the LFSR is clocked for the appropriate

number of clock cycles, the scan chains of the circuit are

filled with a test ti. The test ti contains all the specified

values of ci. Therefore, ti is guaranteed to detect fi.

When an LFSR is used with a given set of test cubes, a

seed may not exist for one or more of the test cubes [2],

[9]. However, even if a seed does not exist for a test cube

ci0 that detects a fault fi, it is possible that a seed exists for

a different test cube ci1 for fi.

To address this issue it is possible to compute different test

cubes to replace ones for which seeds do not exist.

Alternatively, a procedure developed earlier uses a test

cube ci for a fault fi only as guidance for the computation

of a seed si. The procedure allows the seed si to produce a

test ti that conflicts with ci as long as ti detects fi.

However, this procedure still relies on the use of specific

test cubes. Therefore, even with a partial match, it may not

be able to find a seed si for a fault fi based on a test cube

ci.

The procedure described in [11] adds to the circuit an

XOR network that models the constraints of the test data

decompression logic. By performing test generation for the

extended circuit, the procedure from [11] finds seeds for

an LFSR directly, without first computing test cubes.

The goal of this brief is to show that it is possible to

compute seeds for LFSR-based test generation without

using test cubes and without extending the circuit. This

alleviates the constraints that the use of test cubes places

on the ability to detect target faults without the need to

perform test generation for a more complex circuit. Instead

of test cubes, the procedure described in this brief uses

what are called nontest cubes [12]. A nontest cube ui for a

fault fi prevents fi from being detected. In order to detect

the fault, it is necessary to prevent ui from appearing in a

test. This applies to every test and test cube for the fault.

Therefore, the use of nontest cubes for computing seeds

does not limit the ability of the procedure to find seeds

when they exist for a given LFSR.

The procedure for computing seeds based on nontest cubes

uses a low-complexity procedure that is based on logic

simulation of the LFSR to compute the test ti that a given

seed si produces. Fault simulation of the fault fi under ti is

used for determining whether ti detects fi. To compute a

seed si for a given target fault fi, the procedure uses a set

of nontest cubes Ui for fi. It starts from a random

assignment to si. It modifies si so as to avoid the

appearance of nontest cubes from Ui in ti. The

modification of si is expected to lead to the detection of fi

when a seed for fi exists.

The advantage of this procedure is that it is not constrained

by a given test cube. Therefore, a seed for a given LFSR

may be found even if one cannot be found based on a test

cube. Its disadvantage is that the search for a seed can be

more time-consuming, since it is guided only by values

that need to be avoided. To address this issue, it is possible

to use nontest cubes only for faults that cannot be detected

based on test cubes. Experimental results presented in this

brief demonstrate this point. Since only hard-to-detect

faults are targeted, test compaction with nontest cubes is

not considered.

Considering the computation of nontest cubes, a partial set

of nontest cubes for a fault fi can be obtained in a

preprocessing step. The set can be extended during the

computation of a seed si for fi.

COMPUTING SEEDS FOR LFSR

Indian J.Sci.Res. 17(2): 550 - 555, 2018

In particular, every test ti that the seed produces and

does not detect fi can be used for computing a nontest

cube for fi [12]. In this brief, only nontest cubes with

single specified values are used, and they are computed in

a preprocessing step. This is based on the exper

observations that nontest cubes with si

values are the most effective in guiding the generation of a

seed. In addition, hard-to-detect faults in benchmark

circuits have such nontest cubes. Single stuck

used as target faults. A single stuck-at fault where line gi is

stuck at the value ai is denoted by fi = gi /ai. The

procedure can be extended to other fault models. For

example, to consider transition faults, two

cubes can be used. This brief is organized as follows.

Section II describes the computation of nontest cubes.

Section III describes the use of nontest cubes for the

computation of a seed for a target fault. Section IV

describes the generation of seeds for a given set of target

faults. Section V presents the experimental results.

II. Computation Of Non Test Cubes

A set of nontest cubes Ui for a target fault fi = gi /ai is

computed in a preprocessing step as described in this

section.

A nontest cube for fi prevents fi from being activated

and/or propagated to an output. Therefore, the nontest cube

must be avoided by every test and test cube for fi.

Table I

Test Cubes

Only nontest cubes with single specified values are

considered.

For a circuit whose combinational logic has n inputs

(primary inputs and present-state variables), the test cube

u2 j +b , where 0 ≤ j < n and b ∈ {0, 1}, assigns the

value b to inputj , and undefined values to the remaining

inputs. The test cube u2 j +b is represented as u2 j +b (0)

u2 j +b (1) ··· u2 j +b (n − 1), where u2 j +b (k) is the

value of input k under u2 j +b. We have that u2 j +b (j) = b

and u2 j +b (k) = x fork=j. For illustration, the test cubes

with single specified values for a circuit with n = 5 inputs

are shown in Table I. In general, for a circuit with n inputs,

the number of test cubes with single specified values is 2n.

COMPUTING SEEDS FOR LFSR-BASED TEST GENERATION FROM NONTEST CUBES

In particular, every test ti that the seed produces and

ect fi can be used for computing a nontest

cube for fi [12]. In this brief, only nontest cubes with

single specified values are used, and they are computed in

a preprocessing step. This is based on the exper- imental

observations that nontest cubes with single specified

values are the most effective in guiding the generation of a

detect faults in benchmark

circuits have such nontest cubes. Single stuck-at faults are

at fault where line gi is

tuck at the value ai is denoted by fi = gi /ai. The

procedure can be extended to other fault models. For

example, to consider transition faults, two-cycle nontest

cubes can be used. This brief is organized as follows.

f nontest cubes.

Section III describes the use of nontest cubes for the

computation of a seed for a target fault. Section IV

describes the generation of seeds for a given set of target

faults. Section V presents the experimental results.

Non Test Cubes

A set of nontest cubes Ui for a target fault fi = gi /ai is

computed in a preprocessing step as described in this

A nontest cube for fi prevents fi from being activated

and/or propagated to an output. Therefore, the nontest cube

st be avoided by every test and test cube for fi.

Only nontest cubes with single specified values are

For a circuit whose combinational logic has n inputs

state variables), the test cube

{0, 1}, assigns the

undefined values to the remaining

2 j +b is represented as u2 j +b (0)

− 1), where u2 j +b (k) is the

value of input k under u2 j +b. We have that u2 j +b (j) = b

and u2 j +b (k) = x fork=j. For illustration, the test cubes

uit with n = 5 inputs

are shown in Table I. In general, for a circuit with n inputs,

the number of test cubes with single specified values is 2n.

The number of nontest cubes that will be obtained for a

fault is bounded by 2n.

The procedure described in this section determines the

set of nontest cubes Ui for a fault fi = gi /ai as follows.

The procedure traces the circuit forward from gi in order to

find all the outputs to which fi can potentially be

propagated. It then traces the circuit backwar

outputs to find all the inputs that can potentially affect the

detection of fi. This set of inputs is referred to as the input

cone of fi, and it is denoted by J (fi).

For an input j ∈/ J (fi), assigning a value cannot prevent fi

from being detected. Therefore, u2 j and u2 j +1 are

excluded from Ui without further computations. The

procedure evaluates the test cube u2 j +b for every j

(fi) and b ∈ {0, 1}, as follows.

To evaluate u2 j +b, the procedure first initializes all the

circuit lines to unspecified values. It then implies the value

b on input j. This yields the values in the fault

under the test cube u2 j +b. If the fault

is equal to ai, the test cube u2 j +b prevent fi from being

activated. The procedure adds u2 j +b to Ui as a nontest

cube for fi, and it does not consider u2 j +b further.

Otherwise, the procedure computes the values obtained

under u2 j +b in the faulty circuit by implying the value ai

on line gi. The fault fi can potentially be

propagated to an output if it is possible to find a path from

gi to an output such that all the lines along the path carry

fault-free/faulty values from the set {0/1, 0/x , 1/0, 1/x , x

/0, x /1, x /x }.

Such a path is referred to as a propag

propagation path can be found in time that is linear in the

number of circuit lines.If no propagation path exists for

fi , the test cube u2 j +b prevents fi from being

detected. In this case, the procedure adds u2 j +b to Ui as a

nontest cube for fi.

To compute Ui, the procedure considers at most 2n test

cubes. For every test cube that it considers, it performs

logic simulation of the fault-free circuit. In addition, it may

perform logic simulation of the faulty circuit, and a

traversal of the circuit to find a propagation path. For a

circuit with G lines, this requires O (n · G) operations.

III. Computation Of A Seed Based On A Set Of Non

Test Cubes

Let Ui be a set of nontest cubes for a fault fi. The

procedure described in this section uses Ui as it attempts to

compute a seed si such that the test ti it produces detects fi.

The procedure initializes si randomly, and computes the

test ti that si produces. A nontest cube u2 j +b

BASED TEST GENERATION FROM NONTEST CUBES

The number of nontest cubes that will be obtained for a

this section determines the

set of nontest cubes Ui for a fault fi = gi /ai as follows.

The procedure traces the circuit forward from gi in order to

find all the outputs to which fi can potentially be

propagated. It then traces the circuit backward from these

outputs to find all the inputs that can potentially affect the

detection of fi. This set of inputs is referred to as the input

cone of fi, and it is denoted by J (fi).

/ J (fi), assigning a value cannot prevent fi

etected. Therefore, u2 j and u2 j +1 are

excluded from Ui without further computations. The

procedure evaluates the test cube u2 j +b for every j ∈ J

To evaluate u2 j +b, the procedure first initializes all the

es to unspecified values. It then implies the value

b on input j. This yields the values in the fault-free circuit

under the test cube u2 j +b. If the fault-free value of line gi

is equal to ai, the test cube u2 j +b prevent fi from being

ocedure adds u2 j +b to Ui as a nontest

cube for fi, and it does not consider u2 j +b further.

Otherwise, the procedure computes the values obtained

under u2 j +b in the faulty circuit by implying the value ai

on line gi. The fault fi can potentially be activated and

propagated to an output if it is possible to find a path from

gi to an output such that all the lines along the path carry

free/faulty values from the set {0/1, 0/x , 1/0, 1/x , x

Such a path is referred to as a propagation path. A

propagation path can be found in time that is linear in the

number of circuit lines.If no propagation path exists for

fi , the test cube u2 j +b prevents fi from being

detected. In this case, the procedure adds u2 j +b to Ui as a

To compute Ui, the procedure considers at most 2n test

cubes. For every test cube that it considers, it performs

free circuit. In addition, it may

perform logic simulation of the faulty circuit, and a

versal of the circuit to find a propagation path. For a

circuit with G lines, this requires O (n · G) operations.

Computation Of A Seed Based On A Set Of Non

Test Cubes

Let Ui be a set of nontest cubes for a fault fi. The

s section uses Ui as it attempts to

compute a seed si such that the test ti it produces detects fi.

The procedure initializes si randomly, and computes the

test ti that si produces. A nontest cube u2 j +b ∈ Ui

COMPUTING SEEDS FOR LFSR

Indian J.Sci.Res. 17(2): 550 - 555, 2018

indicates that a test ti for fi must have ti (j) = b, where ti (j)

is the value of input j under ti. The test ti that si produces is

said to avoid a nontest cube u2 j +b ∈ Ui

number of nontest cubes from Ui that ti avoids is denoted

by na.

If na < |Ui |, at least one of the nontest cubes in Ui prevents

ti from detecting fi. If na = |Ui |, ti avoids all the nontest

cubes in Ui, and ti may detect fi. Detection is not

guaranteed, since the fault may have other nontest cubes

that are not included in Ui . To check whether ti detects fi,

the procedure simulates fi under ti. If the fault is detected,

the procedure returns si as the required seed. This may

occur accidentally for the initial random seed. Otherwise,

the procedure modifies si by complementing its bits one at

a time in an attempt to detect the fault. The modification is

guided by Ui as follows.

Using the random initialization of si , the procedure

assigns na,best = na . The procedure considers the bits of

si one at a time in a random order. When bit k is

considered, the procedure complements the bit by

assigning si (k) = si (k).

It then computes ti and na. If na ≥ na, best, the procedure

accepts the complementation of bit k, and assigns na, best

= na. Otherwise (na < na, best), it complements si (k) again

in order to undo the complementation.

If bit k is complemented and na = |Ui |, the

procedure simulates fi under ti. If the fault is detected, the

procedure returns si as the required seed.

The procedure considers all the bits of si repeatedly

NMOD times, where NMOD is a parameter of the

procedure. As na, best is increased, the procedure avoids

more of the nontest cubes of fi. After na, best reaches |Ui |,

ti may detect fi. As long as ti does not dete

procedure continues to modify si while ensuring that na =

|Ui | for every bit that it accepts to complement. This

increases the likelihood that fi will be detected.

This process is different from a random search in that it

avoids the nontest cubes from Ui, thus increasing the

likelihood of detecting fi. As shown in [12], avoiding

nontest cubes is sufficient for detecting hard

faults in benchmark circuits. The procedure for generating

a seed si for a fault fi is provided in Procedure 1.

The worst case computational complexity of Procedure 1

is deter-mined by its fault simulation effort in the case

where it does not find a seed. In this case, it attempts to

complement every bit of the seed NMOD times. For an

LFSR with B bits, the number of attempts that the

procedure makes is NMOD · B. For every attempt, it

computes the test ti, and simulates fi under ti if na = |Ui |.

Thus, in the worstcase, the procedure simulates fi under

NMOD · B tests.

COMPUTING SEEDS FOR LFSR-BASED TEST GENERATION FROM NONTEST CUBES

(j) = b, where ti (j)

is the value of input j under ti. The test ti that si produces is

 Ui if ti (j) = b. The

number of nontest cubes from Ui that ti avoids is denoted

t cubes in Ui prevents

ti from detecting fi. If na = |Ui |, ti avoids all the nontest

cubes in Ui, and ti may detect fi. Detection is not

guaranteed, since the fault may have other nontest cubes

that are not included in Ui . To check whether ti detects fi,

the procedure simulates fi under ti. If the fault is detected,

the procedure returns si as the required seed. This may

occur accidentally for the initial random seed. Otherwise,

the procedure modifies si by complementing its bits one at

pt to detect the fault. The modification is

Using the random initialization of si , the procedure

assigns na,best = na . The procedure considers the bits of

si one at a time in a random order. When bit k is

he procedure complements the bit by

≥ na, best, the procedure

accepts the complementation of bit k, and assigns na, best

na, best), it complements si (k) again

If bit k is complemented and na = |Ui |, the

procedure simulates fi under ti. If the fault is detected, the

dure considers all the bits of si repeatedly

NMOD times, where NMOD is a parameter of the

procedure. As na, best is increased, the procedure avoids

more of the nontest cubes of fi. After na, best reaches |Ui |,

ti may detect fi. As long as ti does not detect fi, the

procedure continues to modify si while ensuring that na =

|Ui | for every bit that it accepts to complement. This

increases the likelihood that fi will be detected.

This process is different from a random search in that it

bes from Ui, thus increasing the

likelihood of detecting fi. As shown in [12], avoiding

nontest cubes is sufficient for detecting hard-to-detect

faults in benchmark circuits. The procedure for generating

a seed si for a fault fi is provided in Procedure 1.

The worst case computational complexity of Procedure 1

mined by its fault simulation effort in the case

where it does not find a seed. In this case, it attempts to

complement every bit of the seed NMOD times. For an

of attempts that the

procedure makes is NMOD · B. For every attempt, it

computes the test ti, and simulates fi under ti if na = |Ui |.

Thus, in the worstcase, the procedure simulates fi under

IV. Computation of Seeds for a

Given a set of detectable target faults F, the procedure

described in this section is applied to compute a set of

seeds for F. The set of seeds is denoted by SNTC (for

nontest cubes)

The procedure considers the faults from F one at a time

iteratively. Because of the random decisions made by

Procedure 1, including the random selection of an initial

seed, and because nontest cubes do not provide complete

information about the values that are needed for detecting

a fault, it is possible that a fault will be detected only after

several iterations.

In iteration I ≥ 1, the procedure considers every fault fi

F. For fi, it computes the set of nontest cubes Ui. It then

calls procedure 1 to compute a seed. If a seed si is found,

the proce-

dure computes the test ti that the seed produces. It

performs fault simulation with fault dropping of F under ti.

It then adds si to SNTC.

The procedure terminates if all the faults in F are

detected.In addition, the procedure has a termination

condition based on its run time. This is given by the

parameter RT.

The procedure is summarized as procedure 2.The set of

nontest cubes Ui for a fault fi is recomputed every time the

procedure considers fi .Alternatively, the set can be

computed once and stored for future

detected.

Although the run time of Procedure 2 is bounded by RT, it

is interesting to consider the worst case computational

complexity of an iteration of the procedure. This is

determined by its fault simulation effort in the case where

it does not detect any fault. In this case, the procedure calls

Procedure 1 with every fault from F, for a total of |F | calls.

Procedure 1 simulates a fault under at most NMOD · B

BASED TEST GENERATION FROM NONTEST CUBES

 Set of Target Faults

Given a set of detectable target faults F, the procedure

described in this section is applied to compute a set of

seeds for F. The set of seeds is denoted by SNTC (for

The procedure considers the faults from F one at a time

y. Because of the random decisions made by

Procedure 1, including the random selection of an initial

seed, and because nontest cubes do not provide complete

information about the values that are needed for detecting

l be detected only after

∈≥ 1, the procedure considers every fault fi

F. For fi, it computes the set of nontest cubes Ui. It then

calls procedure 1 to compute a seed. If a seed si is found,

test ti that the seed produces. It

performs fault simulation with fault dropping of F under ti.

The procedure terminates if all the faults in F are

detected.In addition, the procedure has a termination

n its run time. This is given by the

The procedure is summarized as procedure 2.The set of

nontest cubes Ui for a fault fi is recomputed every time the

procedure considers fi .Alternatively, the set can be

computed once and stored for future use if fi is not

Although the run time of Procedure 2 is bounded by RT, it

is interesting to consider the worst case computational

complexity of an iteration of the procedure. This is

determined by its fault simulation effort in the case where

does not detect any fault. In this case, the procedure calls

Procedure 1 with every fault from F, for a total of |F | calls.

Procedure 1 simulates a fault under at most NMOD · B

COMPUTING SEEDS FOR LFSR-BASED TEST GENERATION FROM NONTEST CUBES

Indian J.Sci.Res. 17(2): 550 - 555, 2018

tests. Overall, in an iteration, Procedure 2 simulates a fault

under at most NMOD · B · |F | tests.

V. Experimental Results

The main advantage of Procedure 2 is that it is not

restricted by a given set of test cubes. The goal of the

experiment described in this section is to show that this

flexibility allows it to detect faults that are not detected by

a procedure that uses test cubes. To achieve this goal,

Procedure 2 is applied to the hard-to-detect faults that

remain undetected by a procedure that is guided by test

cubes. The experiment proceeds as follows.

A procedure that was developed earlier, and is guided by

test cubes, allows partial matches between the tests that the

LFSR produces and the test cubes, as long as the tests

detect target faults. Thus, the procedure is more flexible

than a procedure that solves linear equations in order to

find seeds for given test cubes. In an experiment whose

goal was to study the effectiveness of this procedure, all

the flip-flops of the circuit were included in a single scan

chain, and a primitive LFSR from [13] was used for

driving the scan chain directly. A binary search process

yielded the LFSR with the smallest number of bits for

which the procedure achieves the highest fault coverage.

Let the number of bits in this LFSR be B0, and let the set

of seeds be STC (B0).

In this brief, primitive B -bit LFSRs from [13] are

considered for B = B0/2, B0/2 + 1,.., B0 − 1. Only one

LFSR is given in [13] for every value of B, and this LFSR

is used without any selection. For every value of B, the

procedure based on test cubes is used for generating a set

of seeds that is denoted by STC (B). With B < B0, there

are cases where STC (B) does not detect all the detectable

single stuck-at faults. Considering only the faults that

remain undetected, Procedure 2 is used for generating a set

of seeds that is denoted by SNTC (B).

Procedure 2 is applied with the following parameter

values. The number of times Procedure 1 considers the bits

of a seed for complementation, NMOD, is determined as

follows. For I ≤ 100, where I is the iteration of Procedure

2, NMOD = I. For I > 100, NMOD = 100. Thus, the

procedure considers all the bits of a seed once in iteration

1, twice in iteration 2, and so on. Beyond iteration 100 (if

it is reached), the procedure considers all the bits of a seed

100 times.

The run time limit RT is defined with respect to the

normalized run time of Procedure 2. For normalization, the

run time is divided by the run time for single stuck-at fault

simulation of the tests produced by STC (B0).

Normalization provides an indication of the computational

effort of Procedure 2, which is based on fault simulation.

The value of RT is such that the normalized run time is

limited to 1000.

Table II

Benchmark Circuits

The procedure based on test cubes was run with the same

limit on its run time to compute STC (B), for B = B0/2,

B0/2+1, ., B0 −1. A lower run time limit was used in the

earlier study for computing B0 and STC (B0).

A high limit on the run time was selected in order to allow

everyone of the procedures a sufficient number of

iterations for every fault. With this limit, the procedure

based on test cubes is not likely to find additional seeds

even if it is given a higher run time. The results are shown

in Tables II–IV. Table II shows all the benchmark circuits

that are considered for this experiment. For every circuit, it

shows the results of the procedure that is based on test

cubes when it uses the B0-bit LFSR. Column in p shows

the number of inputs to the combinational logic of the

circuit. Column B shows the number of LFSR bits (the

COMPUTING SEEDS FOR LFSR-BASED TEST GENERATION FROM NONTEST CUBES

Indian J.Sci.Res. 17(2): 550 - 555, 2018

value of B0). Column f.c. shows the single stuck-at fault

coverage that the procedure achieves. Column seed s

shows the number of seeds that the procedure produces.

 For most of the circuits in Table II, the procedure based

on test cubes achieves the highest possible single stuck-at

fault coverage by detecting all the detectable faults. The

fault coverage varies with the LFSR when test cubes as

well as nontest cubes are used. Tables III and IV report on

cases with B = B0/2, B0/2 + 1, ..., B0 − 1, where the use of

nontest cubes improves the fault coverage compared with

the use of test cubes. As B is increased, Tables III and IV

report on caseswhere the fault coverage of STC (B) ∪

SNTC (B) increases as well. The only exception is s1423,

where all the values of B are reported.

For every circuit in Tables III and IV, column in p shows

the number of inputs. Column B shows the number of

LFSR bits, B. Column test cubes shows the results of the

procedure that is guided by test cubes. The corresponding

set of seeds is STC (B).Column nont est cubes shows the

results of Procedure 2. The set of seeds considered in this

case is STC (B) ∪ SNTC (B).

 For both procedures, subcolumn f.c. shows the single

stuck-at fault coverage. Subcolumn seeds shows the

number of seeds. Subcolumn nt i me shows the normalized

run time of the procedure. In addition, for Procedure 2,

subcolumn U shows the average number of nontest cubes

in a set Ui based on which a seed was computed. For

ISCAS-89 benchmarks in Table III, subcolumn left shows

the percentage of detectable faults that are left undetected

by Procedure 2. For comparison, subcolumn rand shows

the percentage of detected faults that are left undetected

when 16K random tests are simulated

Table III

Fault Coverage Improvement With Non-Test Cubes

(ISCAS-89)

Table IV

Fault Coverage Improvement With Non-Test Cubes

(ITC-99 and IWLS-05)

The information for Procedure 2 is omitted in the case of

s1423 if the use of nontest cubes does not increase the fault

coverage.

The following points can be seen from Tables III and IV.

There are cases where the use of nontest cubes increases

the fault coverage compared with the use of test cubes

alone. The existence of such cases is significant given that

the procedure based on test cubes already allows partial

matches between the tests that the LFSR produces and the

test cubes. Thus, it is not as constrained by the given test

cubes as a procedure that solves linear equations for

finding seeds. Even with this flexibility, the use of nontest

cubes increases the fault coverage in a significant number

of cases.

Procedure 2 finds nontrivial numbers of nontest cubes for

target faults. These nontest cubes are effective in guiding

the generation of seeds.

The number of seeds may be lower after nontest

cubes are generated because Procedure 2 applies forward-

looking reverse order fault simulation to remove seeds that

become unnecessary. For this experiment, forward-looking

reverse order fault simulation is applied to STC (B) ∪

SNTC (B).

Detailed consideration of the normalized run times

indicates that the procedures typically reach the final fault

coverage with a normalized run time that is significantly

lower than 1000. Thus, they can be run with a lower run

time limit. This can also be seen in Tables III and IV, for

example, from the case of s1423 with B = 17, where

Procedure 2 terminates after detecting all the detectable

COMPUTING SEEDS FOR LFSR-BASED TEST GENERATION FROM NONTEST CUBES

Indian J.Sci.Res. 17(2): 550 - 555, 2018

faults. It is also interesting to note that seeds are computed

for faults that are not detected by random tests.

Table V

Using Non-Test Cubes Alone.

Finally, Table V demonstrates that it is possible to use

Procedure 2 for all the target faults, without first using test

cubes to compute seeds. For Table V, the procedure based

on test cubes and Procedure 2 are applied independently to

all the target faults using the B0 bit LFSR.

Table V demonstrates that Procedure 2 can compute a

complete set of seeds. Its run time is higher as discussed

earlier, supporting its use only for hard-to-detect faults.

VI. Conclusion

This brief described a procedure for computing

seeds for LFSR-based test generation without using test

cubes. Instead, the procedure uses nontest cubes. This was

motivated by the fact that a seed may not exist for a given

test cube even though a seed may exist for a different test

cube that detects the same fault. Thus, the use of test cubes

limits the flexibility of a procedure to compute seeds for

target faults. A nontest cube for a fault must be avoided in

every test for the fault in order to allow the fault to be

detected. Therefore, a nontest cube does not limit the

ability of the procedure to compute seeds with a given

LFSR. The cost of using nontest cubes is an increased

computational effort for computing a seed. Experimental

results demonstrated that, in spite of this cost, the

procedure can compute seeds for some faults that cannot

be detected by a procedure that uses test cubes.

References

[1] B. Koenemann, “LFSR-coded test patterns for scan

designs,” in Proc.Eur. Test Conf., 1991, pp. 237–

242.

[2] S.Hellebrand,S.Tarnick,J.Rajski, and B.

Courtois,“Generation of vector patterns through

reseeding of multiple-polynomial linear feedback

shift registers,” in Proc. Int. Test Conf., 1992, pp.

120–129.

[3] C. Barnhart, V. Brunkhorst, F. Distler, O.

Farnsworth, B. Keller, and B. Koenemann,

“OPMISR: The foundation for compressed ATPG

vec- tors,” in Proc. Int. Test Conf., Oct. 2001, pp.

748–757.

[4] J. Rajski et al., “Embedded deterministic test for

low cost manufacturing test” in Proc. Int. Test

Conf., 2002, pp. 301–310.

[5] N. A. Touba, “Survey of test vector compression

techniques,” IEEE Des.Test Comput., vol. 23, no. 4,

pp. 294–303, Apr. 2006.

[6] S. Alampally, R. T. Venkatesh, P.

Shanmugasundaram, R. A. Parekhji, and V. D.

Agrawal, “An efficient test data reduction technique

through dynamic pattern mixing across multiple

fault models,” in Proc. IEEE 29th VLSI Test

Symp., May 2011, pp. 285–290.

[7] D. Czysz, G. Mrugalski, N. Mukherjee, J. Rajski, P.

Szczerbicki, and J. Tyszer, “Deterministic

clustering of incompatible test cubes for higher

power-aware EDT compression,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol.

30, no. 8, pp. 1225–1238, Aug. 2011.A.

 Chandra, J. Saikia, and R. Kapur, “Breaking the

test application time barriers in compression:

Adaptive scan-cyclical (AS-C),” in Proc. Asian Test

Symp., Nov. 2011, pp. 432–437.

[8] O. Acevedo and D. Kagaris, “Using the

Berlekamp–Massey algorithm to obtain LFSR

characteristic polynomials for TPG,” in Proc. Int.

Symp. Defect Fault Tolerance VLSI Nanotechnol.

Syst., Oct. 2012, pp. 233–238.

[9] X. Lin and J. Rajski, “On utilizing test cube

properties to reduce test data volume further,” in

Proc. IEEE 21st Asian Test Symp., Nov. 2012, pp.

83–88.

[10] T. Moriyasu and S. Ohtake, “A method of one-pass

seed generation for LFSR-based

deterministic/pseudo-random testing of static

faults,” in Proc. Latin-Amer. Test Symp., Mar.

2015, pp. 1–6.

[11] Pomeranz, “Non-test cubes for test generation

targeting hard-to-detect faults,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol.

32, no. 12, pp. 1957–1965, Dec. 2013.

[12] P. H. Bardell, W. H. McAnney, and J. Savir, Built

in Test for VLSI: Pseudorandom Techniques. New

York, NY, USA: Wiley.

