
Indian J.Sci.Res. 17(2): 247-250, 2018 ISSN: 0976-2876 (Print)

 ISSN: 2250-0138(Online)

1Corresponding Author

RECEIVING FM/AM SIGNALS USING SOFTWARE DEFINED RADIO AND USRP

1
M. Asha Jyothi,

 2
Priyanka Saxena

,
3
A.Ravindar

1,2,3
 Electronics and Communication Engineering, Keshav Memorial Institute of Technology, Narayanaguda,

Hyderabad

Abstract - The field of electronics has seen amazing developments with new technologies emerging everyday that provide solutions to

problems of all magnitudes, from socio- economic to the advanced scientific computing. One such development seen was the Open BTS

project using the GNU Radio and USRP. This is an abstract of these technologies. A software-defined radio (SDR) system is a radio

communication system which can tune to any frequency band and receive different modulations across a large frequency spectrum by

means of a programmable hardware which is controlled by software. This paper demonstrates the flexibility and one of the many

utilities of the SDR, combined with the USRP and GNU Radio. However, software defined radios or SDRs, do have

characteristics that make them unique from other types of radios. As the name implies, a SDR is a radio that has the ability to be

transformed through the use of software or re-definable logic. The fundamental characteristic of software radio is that”software defines

the transmitted waveforms and software demodulates the received waveforms.” This is in contrast to most radios in which the processing

is done with either analog circuitry combined with digital chips. GNU radio is a free software toolkit for building software radios.

Keywords - USRP, SDR, GNU RADIO,FPGA.

I. Introduction

 An SDR performs significant amounts of signal

processing in a general purpose computer, or a

reconfigurable piece of digital electronics. The idea

behind software-defined radio is to do all that modulation

and demodulation with software instead of using

dedicated circuitry. The most obvious benefit is that

instead of having to build extra circuitry to handle

different types of radio signals, you can just load an

appropriate program. One instant your computer could

be an AM radio, the next a wireless data transceiver and

then perhaps a HDTV set. This flexibility of software

could be leveraged to do things that are difficult, if not

impossible, with traditional radio setups.

 Traditionally radio’s were a hardware matter.

They are often very cheap, but also very rigid. A radio

created for specific transmit and receive frequencies and

modulation schemes will never divert from these, unless its

hardware is modified. The main idea behind Software

Defined Radio (SDR) is to create versatile transceivers

traditionally, hardware functions into the software domain.

However a radio can never be purely software, because

you need a way to capture and create the radio waves.

Analog radio waves can be converted to digital samples

using a Analog to Digital Converter (ADC) and vice versa

using a Digital to Analog Converter (DAC). The ideal

SDR scheme involves an antenna connected to a

computer via an ADC for receiving and via a DAC for

transmitting. All the processing on the signals, like

(de)modulation, are then done in software, but the actual

transceiving is done in the hardware subsystem.

 SDR is the technique of getting the code as close to

the antenna as possible. It turns Hardware radio problems

into software problems.

II. Introduction

A universal SDR structure with the specific software

(GNU Radio) and hardware (USRP/2) is given in Figure 1.

Fig1: Block diagram of SDR

 Asterisk PBX, also is an open source project to

act as a PBX and route the mobile calls through the

VoIP and SIP.

 All these softwares/peripherals when merged

together, their functionality gives an amazing insight into

solution for reduction of usage of the BTS towers and the

relatively expensive charges paid for them.

III. GNU Radio And GRC

 GNU radio is the free open source software toolkit

for building software radios, in which software defines the

transmitted waveforms and demodulates the received

waveforms. GNU Radio provides functions to support &

implement functions such as a spectrum analyzer, an

oscilloscope, concurrent multichannel receiver and an ever

growing collection of modulators and demodulators.

 GNU Radio Companion (GRC) is a graphical user

interface that allows you to build GNU Radio flow graphs.

Using GNU Radio, a radio can be built by creating a

graph where the vertices are signal processing blocks

and the edges represent the data flow between them. The

GNU Radio components are connected using GRC

tool. The signal processing blocks are implemented in

C++ and the graphs are constructed and run in Python.

RECEIVING FM/AM SIGNALS USING SOFTWARE DEFINED RADIO AND USRP

Indian J.Sci.Res. 17(2): 247-250, 2018

Conceptually, a signal processing block processes an

infinite stream of data flowing from its input ports to its

output ports.

 GNU Radio offers with its application GNU Radio

Companion (GRC) the possibility to form a flow chart

with graphical block elements. This application

provides numerous predefined blocks, organized in

different groups like signal sources, signal sinks as well

as modulation and demodulation functions. As signal

source for instance, USRP/2, audio card, wav files, signal

generators or UDP/TCP ports may be used. Being installed

with GNU Radio, GRC can be run from Linux by

simply typing “grc” in an xterm shell.

IV. USRP

 USRP (Universal Software Radio Peripheral) is

the peripheral equipment for implementing the GNU

Radio. The USRP acts as a BTS, replacing the

mobile towers. This is highly efficient and economical

in “small range mobile connectivity”. The USRP is a

hardware designed by Ettus Research to allow general

purpose computers to function as high bandwidth software

radios. In essence, it serves as a digital baseband and IF

section of a radio communication system.

 The basic design philosophy behind the USRP has

been to do all of the waveform-specific processing, like

modulation and demodulation, on the host CPU. All of the

high-speed general purpose operations like digital up and

down conversion, decimation and interpolation are done

on the FPGA.

 A large community of developers and users have

contributed to a substantial code base and provided many

practical applications for the hardware and software. The

powerful combination of flexible hardware, open-source

software and a community of experienced users make it

the ideal platform for your software radio development.

 USRP serves as interface between digital (host)

and analog (RF) domain. In May 2009, the well-

proven Universal Software Radio Peripheral (USRP)

product became extended by an enhanced product named

USRP2. USRP2 uses a different FPGA, faster ADCs

and DACs with a higher dynamic range and a Gbit-

Ethernet connection. All USRP daughterboard’s can be

used furthermore.

 Daughter boards can be plugged into the USRP

motherboard according to the specific frequency bands

needed. These daughterboards can be hooked up

to appropriate antenna’s. On the receiving path (RX), a

daughterboard captures the required frequency range and

sends it through the PGA, possibly amplifying the

signal, towards the ADC. The resulting digital signal is

passed on to the FPGA. The FPGA and the host CPU both

do some processing on the signal, and though the exact

division of labor can be changed, standard the high speed

general purpose processing, like down and up

conversion, decimation, and interpolation are

performed in the FPGA, while waveform-specific

processing, such as modulation and demodulation,

are performed at the host CPU. The USRPs have a 64

MHz crystal oscillator internal clock.

 In USRP2 motherboard, an analog to digital

converter (ADC) samples the received signal and

converts it to digital values depending on the ADCs

dynamic range of 14 bit. The digitized samples from ADC

are mixed down to the desired IF by being multiplied with

a sine respectively cosine function resulting in the I and Q

path. The frequency is generated with a numerically-

controlled oscillator (NCO) which synthesizes a

discrete-time, discrete-amplitude waveform within the

FPGA. Via the used NCO, very rapid frequency hopping is

feasible.

 Afterwards a decimation of the sampling rate is

performed by an arbitrary decimation factor N. The

sampling rate (fs) divided by N results in the output

sample rate, sent to host. In transmit path, the same

procedure is done vice versa using digital up converters

(DUC) and digital analog converters (DAC).

V. Design &Implementation

 This paper presents receiving AM signals. It uses a

data file that contains several seconds of recorded signals

from the AM broadcast band. This data file was obtained

from the USRP. If you have a USRP available you could

also use that as your input and receive live signals. The

data file can be downloaded from the SDR Web page.

 Construct the flow graph shown below consisting of

a File Sink, Throttle, and FFT Sink. Set the Sample Rate in

the variable block to 256000. This is the rate at which the

saved data was sampled.

Fig2: Flow graph

 When we execute the flow graph in fig2 the

display spans a frequency range from just below -120KHz

to just above 120KHz. This exact span is 256KHz, which

RECEIVING FM/AM SIGNALS USING SOFTWARE DEFINED RADIO AND USRP

Indian J.Sci.Res. 17(2): 247-250, 2018

corresponds to the Sample Rate that the data was recorded

at.

 The peaks that we observe on the display in fig3

corresponds to the carriers for AM broadcast signals. You

should also be able to observe the sidebands for the

stronger waveforms.

Fig3: Waveform Window

 In this step we will expand the frequency scale on

the FFT display so that we can view the signals with

greater resolution. While we cannot change the original

data, we can resample it to either increase or decrease the

sample rate. We will decrease the sample rate by using

decimation. Modify the flow graph as follows.

Fig4: Block Diagram for Frequency Adjustment

 Add a Variable block (under Variables menu). Set

the ID to resamp_factor and the Value. Add the Rational

Resampler from the Filters menu. Set its decimation

factor to resamp_factor. That means that it will divide the

incoming data rate by the decimation factor. In this

example, the incoming 256K samp/sec data will be

converted down to 256K/4 = 64K samp/sec. Execute the

new flow graph. You should now observe a frequency

span of only 64KHz (-32KHz to +32KHz). The

bandwidth of an AMbroadcast signal is 10KHz (+/-

5KHz from the carrier frequency).

VI. Conclusion

 This work integrates many aspects of SDR projects

based on GNU Radio and USRP/2. The given text deals

with the wide application- and research-oriented field of

Software-Defined Radio (SDR). With the open source

project GNU Radio and the hardware platform USRP/2,

very complex wireless transmission systems can be

explored, even with a relatively small budget.

Principally all of the needed modules and information

can be found in the internet. It is the credit of this paper to

bring these widespread information together.

 In our paper, we have first introduced the concept

of software-defined radio. Afterwards, we describe the

related hardware support and development environment

respectively. Then, we have explained about what we have

implemented based on our demo. Through this Research,

we have build up knowledge and experience for

developing GNU Radio.

 Although the SDR technological advances are

promising, SDR technology suitable for use by the public

safety community is still in an early stage. This is due to

several factors. SDR technology has the potential to cause

interference with other existing radio systems. Software

radio is an exciting field, and GNU Radio provides the

tools to start exploring. A deep understanding of software

radio requires knowledge from many domains. We're

doing our best to lower the barriers to entry.

VII. Acknowledgments

 Through the course of my research i have been

fortunate to enjoy unwavering support and encouragement

of my husband M.Sunny Sheldon & my Daughter Sherlyn

Andrea, my parents and my Inlaws. All the Authors are

also thankful to Directors of KMIT for Encouraging and

supporting us by facilitating all amenities required.

References

[1] www.gnu.org/software/gnuradio/gnuradio.html

[2] J.Mitola III Software Radio Architecture. Wiley-

Interscience, 2000.

[3] Blossom, Eric. Exploring GNU Radio.

http://www.gnu.org/software/gnuradio/doc/e

xploring-gnuradio.html.

[4] Ettus, Matt (et al.). USRP2GenFAQ.

http://www.gnuradio.org/redmine/wiki/gnur

adio/USRP2GenFAQ

[5] The OpenBTS Project

http://www.openbts.sourceforge.net.

[6] European Defence Agency, “Back-ground on

Software Defined Radio,” Nov. 2007.

[7] Abidi, “The path to the software-defined radio

receiver,” Solid- State Circuits, IEEE J., vol. 42, no.

5, pp. 954– 966, 2007.

RECEIVING FM/AM SIGNALS USING SOFTWARE DEFINED RADIO AND USRP

Indian J.Sci.Res. 17(2): 247-250, 2018

[8] E. Buracchini, “The software radio concept,”

Commun. Mag., IEEE, vol. 38, no. 9, pp. 138–143,

Sept. 2000.

