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ABSTRACT 
In this paper, we propose a new bearing fault diagnosis system for electrical machines using multi-class support vector machine (MSVM). 

Firstly, we obtain the frequency spectrum of vibration signal using fast Fourier transform (FFT). Then the spectrum analysis of this signal 

for various bearing faults is presented. We show that the bearing faults result in some changes in the vibration signal spectrum. However, in 

some situations which these frequency components place in noisy domains or the fault is in the early stage, diagnosis of faults using spectrum 

analysis fails. Therefore, we employ this spectrum as the feature vectors in pattern recognition methods for faults identification. In this 

paper, each case of healthy or bearing fault (consisting of inner race, outer race, ball and cage faults) is considered as a separate class in a 

multi-class classification problem and the spectrum of the vibration signal is used as the feature vector. In order to evaluate our proposed 

method, a real world data set is employed. This data set is obtained from a set of experiments performed on an electrical machine to measure 

the vibration signal in each case of bearing faults and healthy condition. A multi-class classifier is designed using this data set. This classifier 

is able to identify the type of the bearing faults and our extensive experimental results demonstrate the effectiveness of the proposed method 
in bearing fault diagnosis of electrical machines.  
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Rotary machineries especially electrical motors show an 

important impact in the industry applications (Nandi, 2005). 

Therefore, monitoring and fault diagnosis of electrical machines 

have attracted the attention of many researchers in the recent 

years. Since the electrical motors encounter various stresses in 

working situations, prediction of their faults and preventing them 

will result in economic advantages. Each fault or defect which 

occurs in the rotary machinery will affect the vibrations of that 

machine. In this paper, we analyze these vibrations in order to 

detect the occurrence of the fault and even identify the type of 

the occurred fault. Generally, the vibrations of the motor under 

various loads and artificial faults are captured. The first step in 

repairs is fault detection and identification (Korbicz, 2004). So 

far, many works have been presented on monitoring both 

electrical and mechanical performances of electrical machines in 

the literature (Tavner, 2008, Bellini, 2008). These researches 

include two basic logics: 1) the fault detection and 2) the fault 

identification. The most well-known mechanical faults detection 

approach is based on analyzing the spectrum of vibration signal 

using signal processing methods. The spectrum of the vibration 

signal is computable, but if the faults are in the early stages, the 

frequency components will occur in the noisy region and 

therefore cannot be detected. On the other hand, the nonlinear 

behavior of electrical machines makes the fault identification 

difficult. 

                   In the recent decade, the machine learning techniques 

such as neural network, fuzzy logic, genetic algorithm (Vas, 

1999) and kernel based methods (Vapnik, 1998, Tipping 2001, 

Mohsenzadeh, 2013) are widely used for fault detection 

applications. Support vector machine is a statistical learning 

method with the state of the art performance in many 

classification applications (Vapnik, 1998). It can be claimed that 

the SVM classifier outperforms neural network classifiers in 

terms of generalization. Moreover, SVM is more interesting for 

the problem of electrical machines fault diagnosis, since the 

performance of SVM in not dependant on the number of 

extracted features. Inherently, SVM is a binary classifier and can 

discriminate two classes. We have been previously used SVM for 

the misalignment shaft fault diagnosis in (Estilaf, 2013). 

Considering that there are various types of bearing faults, in this 

paper we employ the multi class support vector machine for 

identifying these faults. In contrast to the previous works which 

use the strategies one-against-one or one-against-others (Peng, 

2013) or semi-supervised learning methods (Xiukuan, 2009) to 

perform multi class discrimination using binary SVM classifier, 

we employed a MSVM which considers all classes 

simultaneously and performs multi class classification. 
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Figure 1: The block diagram of the    proposed system for 

bearing fault diagnosis 

                   In this paper, we employed one of the pattern 

recognition methods for bearing fault diagnosis of electrical 

machines. Therefore, without involving any analyses of the 

frequency components of vibration signals, the type of the 

bearing fault is identified using MSVM. In our experiments, we 

consider six states including normal situation, ball fault, inner 

race fault and outer race fault (directed in the load zone (3 

o'clock), directed orthogonal to the load zone (6 o'clock) and in 

the 12 o'clock). Figure 1 demonstrates the block diagram of the 

proposed system for bearing fault diagnosis based on MSVM. 

Our extensive experiments on the real world data indicate the 

efficiency of the proposed method. 

Bearing Faults and Their Effects on the Vibration Signal 

                   In this section, we introduce the main parts of the 

bearing and their possible defects. We also explain how these 

defects occur and how these defects affect the vibration signal. 

Then we present the frequency spectrum equations of the bearing 

faults. 

                   Bearings are used to connect the rotating components 

to the fixed components of an electrical machine. The alloy 

defects cause the most of the bearing faults in the electrical 

machines. A bearing consists of four main parts: inner race, outer 

race, ball and cage which are placed in the space between rings 

and makes rotating possible for them (Immovilli, 2010). 

Generally, various defects in bearing occur in its main parts. 

Structure of a bearing and its dimensions are depicted in Figure 

2.  

 
Figure 2: Structure of a rolling-element bearing 

                   The bearing defects are typically local. Non-

lubricating and acid or water corrosion may cause these defects. 

In normal operating conditions of a machine, small abrasion on 

the surfaces of bearing walls began to grow. When this process 

progresses, Ball began to produce a series of harmonic signals 

and make periodic impulse sequence that is detectable. Since the 

inner race defect is mostly produced by an outer factor, its 

vibration signal is weaker. Amplitude and period of the strike are 

determined by the rotation speed, fault location and dimensions 

of the bearing characteristics. The frequency components of each 

main parts of the bearing can be calculated in hertz. The 

frequency of ball defect is twice of the frequency of ball rotation 

which rotates around its own axis and is obtained as          
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                   Also the frequencies of inner and outer race defects 

are as following 
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where Dc is the bearing pitch diameter, Db is the ball diameter, Fr 

denotes the Supply frequency rotor f, β  denotes the angle 

between the stator and the rotor and finally NB is the number of 

balls. 

Also the frequencies of inner and outer race defects can be 

obtained as 

(5)  
rBI FNF ..4.0=  

(6)  ...6.0 rBO FNF =  

Support Vector Machine Classifier 

                   In this section, we review the support vector machine 

briefly. Then we explain the two common strategies for 

extending a binary classifier to a multi-class one. After that, we 

introduce MSVM and discuss the advantages and drawbacks of 

these approaches. 

The support vector machine is introduced by Vapnik in 1998 

(Vapnik, 1998). The SVM is a kernel based sparse learning 

method for discriminating two classes (Figure 4). 

 
Figure3: Binary classification using SVM 

                   The basic idea in the SVM is to map the data to a 

higher dimensional space in order to find a hyper-plane which 
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can separate the two classes (Figure 3).  In order to perform this 

mapping, SVM employs a kernel function. This kernel function 

can be a linear, polynomial or Gaussian function. The SVM is 

theoretically well established and has shown promising 

performance in many applications. In this section, we briefly 

review the theory of SVM. 

                    Consider a given data set S of input points Xi for 

i=1,…,N. Each point Xi belongs to one of the classes with label 

yiϵ{1,-1}. Let φ be the kernel function which maps the data from 

the input space R
n
 to the feature space F. The hyper-plane wφ 

(x)+b discriminates the data in the feature space and the decision 

function is  

(7)  b+(x))sign(w=f(x) φ  

There are many hyper-planes which can perform the 

discrimination task with minimum error. Therefore, the hyper-

plane with minimum error and also the maximum margin is 

found as the optimum hyper-plane by the SVM. Margin is 

defined as the distance of the closest data point to the hyper-

plane. To maximize the margin, the cost function  

ψ(w) = 0.5(w×w) should be minimized subject to the constraint in 

Equation (7). Using Lagrange multiplier method, this constraint 

optimization problem is solved and the decision function is 

obtained as 
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where α is the result of the constrained optimization problem and 

SV denotes the support vectors. 

Multi-class Support Vector Machine  

                   The support vector machine is inherently a binary 

classifier which is designed to distinguish between two classes. 

There are two main strategies known as one-against-one and one-

against-others for extending a binary classifier to be employed 

for a multi-class application. In one-against-one strategy, the 

multi-class problem with K classes is decomposed into K(K-1)/2 

binary classification problems considering the data from one 

class against the data from another class as a binary classification 

task a K(K-1)/2 classifiers are designed for each problem. In one-

against-others approach, K binary classifiers are designed 

considering the data of one class against all other remaining data 

from other classes as a binary classification problem. The one-

against-one strategy has demonstrated a better performance in 

comparison with the one-against-others approach in many 

applications (Murphy, 2012). However, one-against-one 

approach (K(K-1)/2) needs to design more binary classifiers 

comparing with one-against-others (K). Both of these approaches 

require a post processing to combine the results of the designed 

binary classifier in testing stage, for example voting. Besides 

these two strategies, there is another approach which is 

inherently a multi-class classifier and is presented in (Liangli, 

2006). In contrast to the two mentioned strategies (one-against-

one and one-against-others), this method does not involve any 

post processing in the testing stage. In this paper, we employ this 

approach for identification of the bearing faults. 

Experimental Results 

                   In this section, we will evaluate the proposed system 

for the bearing fault diagnosis. First, we introduce the motor 

characteristics and the system configuration for the data 

measurement and acquisition. Then we will analyze the 

frequency components and finally we will present the 

experimental results of the proposed system on the mentioned 

data.  

                    To evaluate our proposed method, we used the 

bearing test data from Case Western Reserve University. Figure 

4 shows the system used for measuring the data. This system 

includes a 2 hp Reliance Electric motor (left), a torque 

transducer/encoder (center), a dynamometer (right) and  control 

electronic (not shown). The data is collected from the 2 hp 

Reliance Electric motor and acceleration data is measured at 

different locations of bearings. An artificial defect about 0.007 

inches in diameter is introduced to the inner raceway, ball and 

outer raceway. The faulted bearings are installed to the motor 

and the vibration signals are recorded through the accelerometer 

on the magnetic bases. The defect location with respect to the 

bearing load affects the vibration signals of the motor. Therefore 

three locations including 3 o'clock (in the load direction), 6 

o'clock (orthogonal to the load direction) and 12 o' clock are used 

for the data measurements. The information from normal and 

faulted bearings is recorded with the rate of 48000 samples per 

second. 

 

 

Figure4: The system configuration for data measurement 

Spectrum Analysis of the Vibration Signal 

                   A specific defect in the rotating equipments will 

cause vibrations with the specific spectrum (with the specific 

frequency, phase and amplitude). Therefore, we can analyze the 

spectrum of the vibration signal to detect and identify a defect in 

the electrical motor. In this paper, we use the Fast Fourier 

Transform (FFT) to calculate the spectrum of the vibration 

signal. Figures 5 and 6 depict the spectrum of the normal 
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situation and the outer race fault in 3 o' clock, direction 

respectively. For clarity, these figures are shown in the frequency 

interval 0 to 120 Hz and the amplitude of the spectrum is 

normalized and plotted in dB scale. The mechanical frequency of 

rotor and its spectrum amplitude are marked in Figures 5 and 6. 

Comparison of curves in Figures 5 and 6 shows that the outer 

race fault 

 in 3 o'clock direction decreases the amplitude of the spectrum at 

the mechanical frequency of rotor. Therefore, we can employ 

these spectrums as the feature vectors for the MSVM classifier.  

We also computed the amplitudes of side band frequency 

components of vibration signal for all the bearing faults cases 

and presented the results in Table 1. As can be seen in Table 1, 

we can compute the frequency spectrum of the vibration signal. 

But   when the defects are in the early stages, the frequency 

components occur in noisy domains. Therefore they are not 

detectable by spectrum analyzing. In this paper we solve this 

problem by using the MSVM for detecting the bearing faults in 

these situations. 
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Figure5: The frequency spectrum of the vibration signal for 

the normal bearing 
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Figure6: The frequency spectrum of the vibration signal for 

the outer race fault      (3 o'clock location) 

Bearing Fault Diagnosis Using MSVM 

                   In this section, we model the problem of bearing fault 

detection and identification as a multi-class discrimination 

problem. As illustrated in Table 2, the normal situation is 

considered as class 1 and the bearing faults are assigned to the 

classes 2 to 6. For the fault detection using MSVM, we construct 

the data base as follows: 

 

Table 1: Comparing amplitudes of vibration signal spectrum for different ball bearing faults in rotor and side band 

frequencies 

Outer Race 

(12 o'clock) 

(dB) 

Outer Race (6 

o'clock) (dB) 

Outer Race (3 

o'clock) (dB) 

 Inner 

Race (dB) 

Ball 

(dB)  

Normal 

(dB) 

 

Frequency 

(Hz) 

 

 

-48.36 -58.8 -57.63 -48.9 -52.25 -41.77 29.2 Fr  

-48.12 -60.26 -51.59 -38 -40.48 -36.47 58.3 2Fr 

-67.82 -60.26 -51.58 -62.08 -55.36 -42.72 87.5  3Fr  

-42.65 -52.57 -46.35 -54.99 -42.39 -35.5 116.6 4Fr 

Table 2: Assigning class labels to ball bearing faults 

Outer Race 

Fault 

 (12 o'clock) 

Outer Race Fault 

      (6 o'clock)        

  Outer Race Fault 

      (3 o'clock)  

     Inner 

Race Fault 

  Ball 

Fault 
   Normal      

Class 6 Class 5 Class 4 Class 3 Class 2 Class 1 

 

                  We use 960 measured vibration signals with length of 

500. Then we calculate the FFT of these signals and consider the 

amplitude of them as the training samples. Therefore, we have 

960 training samples with the length of 500 for each of the 
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classes indicated in Table 2. In other words, there are 

960×6=5760 samples in the data base. We employ 10 percent of 

data for training and 90 percent of data for testing. 

                   Table 3 shows the accuracy of MSVM in fault 

identification, the number of support vectors and also the run-

time of this method for different training set sizes. As can be 

seen, the accuracy of the proposed method for fault identification 

is very good even for small training set sizes. As shown in Table 

3, the accuracy of fault diagnosis for 120 training samples is very 

good (99.91%). We also presented the detection accuracy for 

each kind of faults (ball fault, inner race fault and outer race fault 

(in 3, 6 or 12 o'clock directions)) and normal situation in Table 4 

for 120 training samples. As shown, the accuracy of MSVM in 

the fault identification is very good (mostly 100%). In order to 

show the effectiveness of the proposed method in comparison to 

neural network (NN) methods, we compared the results of fault 

detection using our proposed method with a radial basis function 

(RBF) neural network in Table 5. Both methods (MSVM and 

RBF NN) are trained using 120 training samples and are tested 

over 1080 testing samples. The results in Table 5 indicate that the 

MSVM is superior to the RBF NN in terms of accuracy and run-

time.  

                   In order to design a neural network, the number of 

layers, the number of neurons in each layer and also the decision 

functions should be predetermined. In contrast, using SVM does 

not involve such structural problems. 

CONCLUSION  

                   In this paper we presented an effective method for 

identification of bearing fault in electrical machines. To this end, 

we first analyzed the frequency spectrum of vibration signal and 

showed that the ball bearing defects result in some changes in the 

vibration signal frequency spectrum. However 

 

Table 3: Comparison of accuracy, sparsity (number of support vectors) and run-time of the MSVM in ball bearing fault 

diagnosis for different training set sizes 

Time (s) 

 

The number of 

support vectors 

 

Accuracy 

(%) 

 

Number of 

testing samples 

 

Number of 

training samples 

 

0.007 6 84.48 54 6 

0.009 12 85.63 104 12 

0.014 16 99.26 270 30 

0.017 39 99.63 540 60 

0.043 58 99.91 1080 120 

0.135 80 99.95 2160 240 

0.201 89 99.88 2700 300 

1.460 115 100 5184 576 

Table 4: Accuracy comparison of MSVM in identification of bearing faults for 120 training samples 

Accuracy (%) 

 

Number of 

testing samples 

 

Number of 

training samples 

 

Class label 

 

 

Type of bearing fault 

 

100 180 120 1 Normal 

100 180 120 2 Ball 

100 180 120 3 Inner Race 

100 180 120 4 
Outer Race 

(3 o'clock) 

100 180 120 5 
Outer Race 

(6 o'clock) 

99.44 180 120 6 
Outer Race 

(12 o'clock) 

Table 5: Comparison of neural network and MSVM in terms of accuracy and speed 

Time (s) Accuracy (%) Classifier 
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0.043 99.91 Multi -class Support Vector Machine 

13.787 96.46 Artificial Neural Network 

in some situations where the defects are in early stages and the 

frequency components are located in the noisy segments of the 

spectrum, the fault detection using spectrum analysis is hard. 

Therefore, in the proposed method, we used the spectrum as the 

feature vectors. These features are employed as the input of the 

multi-class support vector machine in order to identify the type 

of occurred fault. This method has been employed on the real 

world data and the results demonstrate the effectiveness of the 

proposed method in terms of accuracy and speed in comparison 

to neural networks. The high speed of the proposed method 

makes it suitable for on-line applications. 

REFRENCES 

Nandi S., Toliyat H. A. and Li X.; 2005. Condition monitoring 

and fault diagnosis of electrical motors-a review. 

 Energy Conversion, IEEE Transactions on, 20.4: 719-

729. 

Korbicz, J. (Ed.).; 2004. Fault Diagnosis.: Models, Artificial 

Intelligence, Applications. Springer. 

Bellini, A., Filippetti, F., Tassoni, C., & Capolino, G. A.; 2008. 

Advances in diagnostic techniques for induction 

machines. Industrial Electronics, IEEE Transactions on, 

55(12):  4109-4126.  

Vas, P.; 1999. Artificial-intelligence-based electrical machines 

and drives: application of fuzzy, neural, fuzzy-neural, 

and genetic-algorithm-based techniques, 45. Oxford 

University Press. 

Vapnik, V. N.; 1998. Statistical learning theory. John Wiley & 

Sons, New York. 

Filippetti, F., Franceschini, G., Tassoni, C., & Vas, P.; 2000. 

Recent developments of induction motor drives fault 

diagnosis using AI techniques. Industrial Electronics, 

IEEE Transactions on, 47(5): 994-1004.  

Estilaf H. A., Rastegar fatemi S. M. J.; 2013. Misalignment Fault 

Diagnosis of Induction Motor by Using the Signals of 

Support Vector Machines. 5th Iranian Conference on 

Electrical & Electronics Engineering (ICEEE), Azad 

University Gonabad. 

Liang-li, H. ; 2006. Multi-Class Support Vector Machine 

Summarazation. China Water Transport, 6(2): 72-74.  

Zhao, X., Li, M., Xu, J., & Song, G.; 2009, December). Multi-

Class Semi-Supervised Learning in Machine Condition 

Monitoring. In Information Engineering and Computer 

Science. (ICIECS):1-4.  

Immovilli F.; 2010.  Diagnosis of bearing faults in induction 

machines by vibration or current signals: A critical 

comparison. Industry Applications, IEEE Transactions 

on 46.4: 1350-1359. 

Cortes C., Vapnik V.; 1995.  Support  Vector  Networks. 

Machine Learning. 20.3 : 273-297. 

Crammer K., & Singer Y.; 2002. On the algorithmic 

implementation of multiclass kernel-based vector 

machines. The Journal of Machine Learning Research 2: 

265-292.  

Case Western Reserve University, Bearing data centre, last 

accessed 8/08/2013 

URL:http://www.eecs.cwru.edu/laboratory/bearing.  

Mohsenzadeh Y., Sheikhzadeh H., Reza A. M., Bathaiee N., 

Kalayeh M. M.; 2013. The Relevance Sample-Feature 

Machine: A Sparse Bayesian Learning Approach to 

Joint Feature-Sample Selection. IEEE Trans. On 

Cybernetics, 43(6) : 2241-2254.  

Tavner, P. J.; 2008. Review of condition monitoring of rotating 

electrical machines. Electric Power Applications, IET, 

2(4): 215-247.  

Xu, P., & Chan, A. K.; 2003. Support vector machines for multi-

class signal classification with unbalanced samples. In 

Neural Networks. Proceedings of the International Joint 

Conference on 2: 1116-1119.  

 

 

 


