A RESTRICTION ON CENTRALIZERS IN FINITE NON-ABELIAN GROUPS

YAHYA SHABANPORa AND SHAABAN SEDGHIb

aDepartment Of Mathematics, Young Researchers and Eliteclub, Ghaemshahr Branch, Islamic Azad University, Ghaemshahr, Iran
bDepartment Of Mathematics, Ghaemshahr Branch, Islamic Azad University, Ghaemshahr, Iran

ABSTRACT

For a given group G, we consider the finite non-abelian groups G for which $|C_G(g):<g>| \leq m$ for every $g \in G \setminus Z(G)$. We show that the order of G can be bounded in terms of m and the largest prime divisor of the order of G. Our approach relies on dealing first with the case where G is a non-abelian finite p-groups. In the situation, if we take $|C_G(g):<g>| \leq m$ for every $g \in G \setminus Z(G)$, we show that $|C_G(g):<g>| \leq m$ with the only exception of G_{ab}. We denote by $\Omega_i(G)$ the subgroup generated by the elements of G of order at most p^i, and G^{p^i} is the subgroup generated by the p^ith powers of all elements of G.

Given a non-abelian groups G, it makes sense to impose restrictions on the centralizers of non-central element, and ask what the effect is on the whole of G. For example, we may ask what happens if we require that $|C_G(g):<g>| \leq m$ for every $g \in G \setminus Z(G)$, if we take into account that every element commutes with itself, and put a bound on $|C_G(g):<g>|$ as g runs over $Z(G)$. Let us define the maximum centralizer index of a non-abelian finite groups G as

$$mc(G) = \max\{|C_G(g):<g>| \mid g \in G \setminus Z(G)\}.$$

then the goal of this paper is to get bounds for the order of G under the condition that $mc(G) = 1$ and $mc(G) = p^k$. If G is non-abelian of order pq, with p and q primes, that $m = 1$ but $|G|$ is unbounded.

Proof

If $G \cong Q_8$ or G is non-abelian of order pq with p and q primes, then it is clear that $mc(G) = 1$.

$$Q_8 = \{+1, -1, i, -i, j, -j, k, -k\} \Rightarrow |Q_8| = 8$$

and

$$<i> = \{+1, -1, i, -i\} \Rightarrow |<i>| = 4$$

we know that

$$1 \times i = i \times 1 \Rightarrow i = i$$

$$i \times i = i \times i \Rightarrow -1 = -1$$

$$(-i) \times i = i \times (-i) \Rightarrow 1 = 1$$

$$(-1) \times i = i \times (-1) \Rightarrow -i = -i$$

So

$$C_{Q_8}(i) = \{+1, -1, i, -i\} \Rightarrow |C_{Q_8}(i)| = 4$$

KEYWORDS: non-abelian finite p-groups, $g \in G \setminus Z(G)$.

Remark:

If G is a finite p-group then $\Omega_i(G)$ denotes the subgroup generated by the elements of G of order at most p^i, and G^{p^i} is the subgroup generated by the p^ith powers of all elements of G.

Main Results

This section is devoted to obtaining a bound for the order of a non-abelian finite p-group G given that $mc(G) = 1$. Actually, we will get the best possible bound in terms of p^{d+1}. Let G be a finite non-abelian group. Then $C_G(g) = <g>$ for every $g \in G \setminus Z(G)$ if and only if $G \cong Q_8$ or G is non-abelian of order pq.

Lemma

If $G \cong Q_8$ or G is non-abelian of order pq with p and q primes, then it is clear that $mc(G) = 1$.

$$Q_8 = \{+1, -1, i, -i, j, -j, k, -k\} \Rightarrow |Q_8| = 8$$

and

$$<i> = \{+1, -1, i, -i\} \Rightarrow |<i>| = 4$$

we know that

$$1 \times i = i \times 1 \Rightarrow i = i$$

$$i \times i = i \times i \Rightarrow -1 = -1$$

$$(-i) \times i = i \times (-i) \Rightarrow 1 = 1$$

$$(-1) \times i = i \times (-1) \Rightarrow -i = -i$$

So

$$C_{Q_8}(i) = \{+1, -1, i, -i\} \Rightarrow |C_{Q_8}(i)| = 4$$

aCorresponding author
and

$$|C_{Q_{0}}(i) : < i > | = \frac{|C_{Q_{0}}(0)|}{|< i > |} = 1$$

hence

$$mci(Q_{0}) = \max \{ |C_{Q_{0}}(i)| : i \in Q_{0}\backslash Z(Q_{0}) \} = 1$$

let now G be a group such that $mci(G) = 1$, and let P be a Sylow p-subgroup of G which is not central in G. If A is maximal abelian subgroup of P, then $A \not\leq Z(G)$ because $A \leq P \not\leq Z(G)$ and $C_{G}(g) : < g >$ for every $g \in A \backslash Z(G)$. Thus we get the following:

1) A is cyclic and $|A : A \cap Z(G)| = p$.

2) If $p \neq q$ is prime, then $Q \cap C_{G}(P) = 1$ for every Sylow q-subgroup Q of G. In particular, $Q \cap Z(G) = 1$.

If follows from (1) and [8], that P is either cyclic or isomorphic to Q_{0}. In particular, G is divisible by at least two primes. Let K be an arbitrary non-trivial Sylow subgroup of G.

Definition

Let G be a finite p-group. We say that G is p-central if $p > 2$ and $\Omega_{2}(G) \leq Z(G)$, or if $p = 2$ and $\Omega_{2}(G) \leq Z(G)$.

The p-central p-groups are somehow dual to powerful p-groups, which are defined by the condition $G' \leq G^{p}$ if G is odd, or $G' \leq G^{p} = 2$.

A well-known property of powerful p-groups is that $[G^{\pi^{i}}, G^{\pi^{i+2}}] \leq [G^{\pi^{i}}, G^{\pi^{i+3}}]$ for every $i \geq 0$.

Lemma 2.3

Let be a p-central p-group, then

$$|\Omega_{i+2}(G) : \Omega_{i+1}(G)| \leq |\Omega_{i+1}(G) : \Omega_{i}(G)|$$

for every $i \geq 0$.

Proof:

Theorem

Let G be a non-abelian finite p-group such that $mci(G) = p^{k}$. Then $|G| \leq p^{2k+2}$, unless $G \cong Q_{0}$.

Proof:

Assume first that p-central, and let r be such that $\Omega_{r}(G) \leq Z(G)$ but $\Omega_{r+1}(G) \not\leq Z(G)$.

If $|\Omega_{r+1}(G) : \Omega_{r}(G)| = p$ then

By taking (2) into account. For every Sylow q-subgroup $K \cap C_{G}(P) = 1$ and $K \leq Z(G) = 1$. So K is not central in G, and so K can play the role of P in the previous paragraph. Hence $A : A \cap Z(G)$ is prime for every maximal abelian subgroup A of K. But by (2) above (corresponding to P) we know that $K \cap Z(G) = 1$. It follows that every maximal abelian subgroup of K is of prime order, and so K is of prime order.

Hence the order of G is square-free. By taking [7] into account, G is the semidirect product of two cyclic subgroups of coprime orders. According to (2), these two cyclic subgroups must be of prime order. We conclude that G is a non-abelian group of order pq for two primes p and q as desired.

By Theorem B of [2], we know that $G/\Omega_{2}(G)$ is p-central, and that $\exp(\Omega_{1}(G)) \leq p^{i}$ for every $i \geq 1$. Then

$$|\Omega_{i+2}(G) : \Omega_{i+1}(G)| = |\Omega_{i+2}(G) : \Omega_{i+1}(G)|$$

and if we work with $G/\Omega_{2}(G)$ instead of G, it suffices to prove that $|\Omega_{2}(G) : \Omega_{1}(G)| \leq |\Omega_{1}(G)|$.

This follows immediately if we see that the map $x \mapsto x^{p}$ is an automorphism from $\Omega_{2}(G)$ to $\Omega_{2}(G)$. This result is obvious if $p = 2$, since $\Omega_{2}(G)$ is then abelian. If $p > 2$ then $\Omega_{2}(G) \leq Z_{2}(G)$, since $G/\Omega_{2}(G)$ is p-central. Hence $\Omega_{2}(G)$ has class at most 2, and $\exp(\Omega_{2}(G)) \leq \exp(\Omega_{1}(G)) \leq p$. Thus $(xy)^{p}$ for every $x, y \in \Omega_{2}(G)$, and we are done.
\[|\Omega_{i+1}(\frac{G}{\Omega_i(G)}) : \Omega_i(\frac{G}{\Omega_i(G)})| = |\Omega_{i+r+1}(G) : \Omega_{i+r}(G)| \]
\[\leq |\Omega_{i+r}(G) : \Omega_{i+r+(i-1)}(G)| \]
\[\leq |\Omega_{i+r+(i-1)}(G) : \Omega_{i+r+(i-2)}(G)| \]
\[\leq \cdots \leq |\Omega_{i+r+1}(G) : \Omega_r(G)| = p \]

for every \(i \geq 0 \), by lemma 2.3. It follows that \(\frac{G}{\Omega_i(G)} \) is cyclic, and then \(G \) is abelian.

since \(\Omega_r(G) \leq Z(G) \). Thus we have
\[|\Omega_{r+1}(G) : \Omega_r(G)| \geq p^2 \quad (2.1) \]

Again by lemma 2.3, it follows that
\[|\Omega_r(G)| = \frac{|\Omega_1(G)|}{|\Omega_0(G)|} \cdot \frac{|\Omega_2(G)|}{|\Omega_1(G)|} \cdots \frac{|\Omega_{r-1}(G)|}{|\Omega_{r-2}(G)|} \cdot \frac{|\Omega_r(G)|}{|\Omega_{r-1}(G)|} \]
\[= |\Omega_1(G) : \Omega_0(G)| \cdot |\Omega_2(G) : \Omega_1(G)| \cdots |\Omega_r(G) : \Omega_{r-1}(G)| \]
\[\geq |\Omega_1(G)| \cdot p^2 \cdot \cdots \cdot p^2 = p^{2r-2}|\Omega_1(G)| \]

and \(|\Omega_0(G) = 1| \), then
\[|\Omega_2(G) : \Omega_0(G)| |\Omega_2(G) : \Omega_1(G)| \cdots |\Omega_r(G) : \Omega_{r-1}(G)| = \prod_{i=0}^{r-1} |\Omega_{i+1}(G) : \Omega_i(G)| \]
so
\[|\Omega_r(G)| = \prod_{i=0}^{r-1} |\Omega_{i+1}(G) : \Omega_i(G)| \geq p^{2r-2}|\Omega_1(G)| \]

since \(|G : G^p| \leq |\Omega_1(G)| \) so \(\frac{|G|}{|G^p|} \leq |\Omega_1(G)| \) by theorem C of [2], we get
\[\frac{|G|}{|G^p|} \leq |\Omega_1(G)| \leq \frac{|\Omega_2(G)|}{|\Omega_1(G)|} = |G| \leq \frac{|\Omega_2(G)|}{p^{2r-2}} \quad (2.2) \]

Let us choose an arbitrary element \(g \in \Omega_{r+1}(G) \setminus Z(G) \) since \(\Omega_{r+1}(G) \leq Z_2(G) \) we have
\[|\Omega_{r+1}(G), G^p| = |\Omega_{r+1}(G)^p, G| \leq |\Omega_r(G), G| = 1. \]

So \(G^p \leq C_0(g) \), and hence
\[mci(G) = \max(|C_0(g) : < g >| \in \Omega_{r+1}(G) \setminus Z(G)) = p^k \]
we have
\[\max|C_0(g) : < g >| \geq |C_0(g) : < g >| \geq |G^p : < g >| \geq |G^p| \geq \frac{|G^p|}{p^{r+1}} \]

hence
\[p^k \geq |C_0(g) : < g >| \geq |G^p : < g >| \geq \frac{|G^p|}{p^{r+1}} \]

and
\[|G^p| \leq p^{k+r+1} \quad (2.3) \]

Similarly
\[p^k \geq |C_G(g) : < g >| \geq |G^p \Omega_r(G) < g > : \Omega_r(G) < g > \} > |\Omega_r(G) < g > | \]
\[= |G^p \Omega_r(G) < g > : \Omega_r(G) < g > | / |\Omega_r(G)| / p^{r(2.4)} \]
and in particular \(|G^p \Omega_r(G) < g > : \Omega_r(G) < g > | = 1\), we have
\[p^k \geq \frac{|\Omega_r(G)|}{p^r} \Rightarrow |\Omega_r(G)| \leq p^{k+r}. \quad (2.5) \]

Now we consider separately the cases \(G^p \not\leq \Omega_r(G)\) and \(G^p \leq \Omega_r(G)\). Assume that \(G^p \not\leq \Omega_r(G)\). Since \(\frac{|\Omega_r(G)|}{|\Omega_r(G)|} \) is an elementary abelian \(p\)-group of order at least \(p^2\) and since \(\frac{Z(G)}{\Omega_r(G)}\) is a proper subgroup of \(\frac{|\Omega_r(G)|}{|\Omega_r(G)|} \)

\[\bigcap_{g \in \Omega_r(G) \setminus Z(G)} \Omega_r(G) < g > : \Omega_r(G) < g > \]
Consequently, we can choose \(g \in \Omega_r(G) \setminus Z(G)\) such that \(G^p \not\leq g > : \Omega_r(G)\). Since \(G^p \not\leq g > : \Omega_r(G)\), so \(G^p \Omega_r(G) < g > : \Omega_r(G) < g > | = p^r\) and by taking (2.4) into account, we can improve (2.5) to
\[|\Omega_r(G)| \leq p^{k+r-1} \quad (2.6) \]

Also, if \(G^p \leq \Omega_r(G)\) then \(|G^p| \leq |\Omega_r(G)| \leq p^{r+k}\) by (2.5) we can improve (2.3) to
\[|G^p| \leq p^{r+k} \quad (2.7) \]

Thus we can combine either (2.3) and (2.6) and then use (2.2)
\[|G| \leq \frac{|G^p||\Omega_r(G)|}{p^{2r-2}} \leq \frac{p^{k+r+1}p^{k+r+1}}{p^{2r-2}} = p^{2k+2} \]
or (2.5) and (2.7) and then use (2.2)
\[|G| \leq \frac{|G^p||\Omega_r(G)|}{p^{2r-2}} \leq \frac{p^{k+r}p^{k+r}}{p^{2r-2}} = p^{2k+2} \]
to get \(|G| \leq p^{2k+2}\) in any case. This completes the proof when \(G\) is \(p\)-central.

Assume now that \(G\) is not \(p\)-central, and suppose that \(|G| > p^{2k+2}\). We are going to prove that \(G \cong Q_8\). Put \(e = 0\) or 1 according as \(p > 2\) or \(p = 2\). Let us choose a subgroup \(A\) of \(G\) which is maximal in the set of abelian normal subgroups of \(G\) of exponent at most \(p^{1+e}\).

Also \(\Omega_{1+e}(C_G(A)) = A\). If \(A \not\leq Z(G)\) then we get \(\Omega_{1+e}(G) \leq Z(G)\), which is not the case.

Thus \((A \cap Z(G)) \setminus (A \cap Z(G))\) is not empty. Let \(t \in (A \cap Z(G)) \setminus (A \cap Z(G))\) Then
\[p^k \geq |C_G(t) : < t >| \geq |C_G(t)| / p^{1+e} \quad (2.8) \]

since \(t \in A\) and subgroup \(A\) of \(G\) which is maximal in the set of abelian normal subgroups of \(G\) of exponent at most \(p^{1+e}\), so \(|< t >| = p^{1+e}\). In particular case
\[|A| \leq |C_G(t)| \leq p^{k+1+e} \quad (2.9) \]
thus \(A \cap Z(G) \not\subseteq A\) then \(|A \cap Z(G)| \leq |A| \leq p^{k+1+e}\), we have
\[|A \cap Z(G)| \leq |A| / p \leq p^{k+e} \quad (2.10) \]
On the other hand \(G' = \{[t, x]|x \in G\}\), also \(\{[t, x]|x \in G\} \subseteq A \cap Z(G)\), so
\[|G : C_G(t)| = |\{[t, x]|x \in G\}| \leq |A \cap Z(G)| \quad (2.11) \]
Consequently of (2.9), (2.10), and (2.11) relations, we have
\[|G| = |G : C_G(t)| |C_G(t)| \leq |A \cap Z(G)| |C_G(t)| \]

\[|G : C_G(t)| = |\{[t, x]|x \in G\}| \leq |A \cap Z(G)| \quad (2.11) \]
Consequently of (2.9), (2.10), and (2.11) relations, we have
\[|G| = |G : C_G(t)| |C_G(t)| \leq |A \cap Z(G)| |C_G(t)| \]
\[\leq p^{k+\varepsilon} \times p^{k+1+2\varepsilon} = p^{2k+1+2\varepsilon} \]
\[\Rightarrow |G| < p^{2k+1+2\varepsilon} \]

Since \(|G| > p^{2k+2}\), this implies that \(\varepsilon = 0\) according as \(p = 2\) and \(|G| = 2^{2k+3}\). Thus all inequalities (2.8), (2.9), (2.10), and (2.11) are equalities. So \(C_G(t) = A\) by (2.9) relation and consequently \(Z(G) \leq A\), that

\[A \cap Z(G) = Z(G) \Rightarrow |A \cap Z(G)| = |Z(G)| = p^{k+\varepsilon} = 2^{k+1} \]
\[\Rightarrow |A \cap Z(G)| = 2^{k+1} \]

and

\[|A| = p^{k+1+\varepsilon} = p^{k+2} = 2^{k+2} \]

hence

\[[A: Z(G)] = \frac{|A|}{|Z(G)|} = \frac{2^{k+2}}{2^{k+1}} = 2 \Rightarrow [A: Z(G)] = 2 \]

and

\[Z(G) = \{[t, x] | x \in G\} \]

since \(|A: Z(G)| = 2\), we have \(A \leq Z_2(G)\). So any element of \(A \setminus Z(G)\) is a valid choice for \(t\). Also

\[[A: G^2] = [A^2, G] \leq [Z(G), G] = 1, \]

and so \(G^2 \leq C_G(t) = A\). If \(g^2 \in A \setminus Z(G)\) for some \(g \in G\) then we can choose \(t = g^2\), and \(g \in C_G(t) \setminus A\), which is a contradiction. We conclude that \(G^2 \leq Z(G)\). Since \(G' \leq G^2\) so \(G\) is a group of class 2, and \(G' = \{[t, x] | x \in G\} = Z(G)\), for every \(t \in A \setminus Z(G)\) \(2.12\)

In particular \(|G'| = |Z(G)| = p^{k+1} = 2^{k+1}\). Also

\[\exp Z(G) = \exp G' = \exp G / Z(G) = 2 \]

by using that \(G\) is of class 2. Hence

\[\exp G / Z(G) = \exp G / \exp Z(G) = 2 \Rightarrow \exp G = 4 \]

Thus if we choose an arbitrary element \(g \in G \setminus G'\), then \(< g > Z(G)\) is a normal abelian subgroup of \(G\) of exponent at most 4. By embedding this subgroup in a maximal abelian normal subgroup of exponent at most 4, we see that \(g\) can play the same role as \(t\) above, and in particular

\[G' = \{[g, x] | x \in G\} \]

by (2.12). Also \(|G: G'| \geq |G| \). Thus

\[2^{2k+3} = |G| = |G: G'| |G'| \leq |G'|^2, |G'| = |G|^3 = (2^{k+1})^3 = 2^{2k+3} \quad (2.13) \]

and \(k = 0\), hence \(mci(G) = 1\), and \(G \cong Q_8\) by lemma 2.1.

Alternatively, we get \(|G| = 8\) from (2.13), and so \(G \cong Q_8\) or \(G \cong D_8\).

Let \(n > 2\), \(D_{2n} = \{x^i y^j | i = 0, 1, j = 0, 1, ... , n - 1\}\) be an non-abelian group.

Then \(x^i y^j = x^\alpha y^\beta \Leftrightarrow \begin{cases} i \equiv 2 \alpha \\ j \equiv n \beta \end{cases}\) and \(|D_{2n}| = 2n\). Therefore

\[D_8 = \{e, y, y^2, y^3, x, xy, xy^2, xy^3\} \Rightarrow |G| = |D_8| = 8 \]

and

\[< xy \geq \{e, xy\} \Rightarrow |< xy | = 2 \]
we know that
\[e \times xy = xy \times e \Rightarrow xy = xy \]
\[xy \times y^2 = y^2 \times xy \Rightarrow xy^3 = xy^3 \]
\[xy \times xy = xy \times xy \Rightarrow y^2 = y^2 \]
\[xy \times xy = xy \times xy^3 \Rightarrow e = e. \]

So
\[C_G(xy) = \{ e, xy, y^2, xy^3 \} \Rightarrow |C_G(xy)| = 4 \]
and
\[|C_G(xy) : < xy > | = \frac{|C_G(xy)|}{|< xy >|} = \frac{4}{2} = 2 \]
hence
\[mci(D_a) = \max \{|C_G(xy) : < xy >| \mid xy \in D_a \setminus Z(G) \} \Rightarrow mci(D_a) = 2 \]

Now since \(mci(Q_a) = 1 \) but \(mci(D_a) = 2 \), we necessarily have \(G \cong Q_a \).

Now we present an example which shows that the bound \(|G| \leq p^{2k+2} \) in Theorem (2.4) is best possible.

Example 2.5

Let \(p \) be an arbitrary prime, and let \(G \) be the group given by the following presentation:

\[G = \langle a, b \mid a^{p^{k+1}} = b^{p^{k+1}} = 1, a^b = a^{1+p^k} \rangle. \]

Then \(|G| = p^{2k+2}, Z(G) = \langle a^p, b^p \rangle \) and \(o(g) = p^{k+1} \) for every \(g \in G \setminus Z(G) \).

\[C_G(g) = \langle a, b \mid a^{p^k} = b^{p^{k+1}} = 1 \rangle \Rightarrow |C_G(g)| = p^{2k+1} \]

And
\[|C_G(g) : < g > | = \frac{|C_G(g)|}{|< g >|} = \frac{p^{2k+1}}{p^{k+1}} = p^k \]

Therefore
\[mci(G) = \max \{|C_G(g) : < g >| \mid g \in G \setminus Z(G) \} = p^k \]

REFERENCES

