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ABSTRACT 

 Accurate Software Effort Estimation is vital to the areas of Software Project Management. It is a process to predict 

the Effort in terms of cost and time, required to develop a software product. Traditionally, researchers have used the off the 

shelf empirical models like COCOMO or developed various methods using statistical approaches like regression and analogy 

based methods but these methods exhibit a number of shortfalls. To predict the effort at early stages is really difficult as very 

less information is available. To improve the effort estimation accuracy, an alternative is to use machine learning (ML) 

techniques and many researchers have proposed plethora of such machine learning based models. This paper aims to 

systematically analyze various machine learning models considering the traits like type of machine learning method used, 

estimation accuracy gained with that method, dataset used and its comparison with empirical model. Although researchers 

have started exploring Machine learning from past two decades, this paper analyses comparison on studies being used in 

recent years. Subsequently exploring various studies, we found that the estimation accuracy of these ML models is near to the 

satisfactory level and gives enhanced results than that of non-Machine Learning based models.  
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 Software development Effort Estimation is the 

process of estimating the cost and time to develop the 

software. Collectively we call it Software Effort 

Estimation. Estimations done at early stages of software 

development play a vital role in effective software 

project management. There are numerous algorithmic 

and non-algorithmic models exists to estimate the 

software effort but still the research advocates that on an 

average, the overrun of the software projects appears to 

be nearly 30 percent. [Torleif and Jorgensen, 2012] 

 A detailed review was ushered by Jorgensen 

and Shepperd, 2007 which ascertains nearly 10 

estimation approaches for software effort estimation. 

Amongst those methods, the dominating ones were 

regression based methods and also the usage of expert 

judgment and analogy based methods are growing. 

Myriad of software effort estimation techniques exists 

from expert judgement to analogy, empirical models to 

statistical techniques.  

 Instead of using expert judgment to decide the 

minimum and maximum range of effort, software 

specialists better focus to use historical data about 

former estimation error to set realistic minimum– 

maximum effort intervals [Jorgensen and Sjoeberg, 

2003]. 

 Though expert judgment can be very precise, it 

can also be simply misled. If the experts, who are 

involved with estimating the effort, are made aware of 

the budget, expectations of the clients, time availability 

or other parameters that govern the estimation, the 

estimations can be misled.  

 One chronicle way to improve the precision of 

effort estimates is using historical data and estimation 

checklists consisting of various estimation parameters. 

When relevant past data and parameter checklist are 

included in the process, actions are less probable to be 

overlooked, and it’s more likely to produce realistic 

estimates. Many software organizations use tools for this 

so that to improve software effort estimations. 

 Too-low estimates can lead to lower quality of 

product developed, possible rework in later phases, and 

greater risks of project failure; whereas  higher estimates 

can diminish productivity in accordance with Parkinson’s 

law, which states that work expands to fill the time 

available for its completion [Jorgensen, 2014]. 

 Several studies corresponding to estimation of 

effort analyzes and compares the precision of such 

models and approaches.  The study shows that There Is 

No “Best” Effort Estimation Model or Technique. One of 

the foremost reasons for this instability in results is 

essential correlation between various parameters 

governing the software effort, such as project size, type 

of project, development environment etc. [Javier, 2001] 

.In addition to this, the parameters which have prevalent 

impact on the development effort seems to fluctuate, 

signifying that estimation models should be personalized 

to the environments in which they’re used. 

 In past few years, machine learning centered 

methods have been getting growing consideration in 

software development effort estimation research. 

Amongst various popular estimation models like 

algorithmic model and expert judgement, Machine 

learning based models are also considered as an 
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important category of effort estimation [Mendes et. al., 

2003 & Elish, 2009]. 

 Zhang and Tsai, 2003 summate the uses of 

many Machine Learning techniques in software 

development domain, including support vector 

machines, case-based reasoning, decision trees, artificial 

neural networks, and genetic algorithms. 

 Though the study on Machine Learning models 

is growing in academia, latest investigations [Jorgensen 

and Shepperd, 2007, Moløkken-Østvold et. al., 2004 & 

Jorgensen, 2004] have shown that expert judgment 

which a non-machine learning based model is still the 

prevailing technique for software effort estimation in 

industry.  

 The purpose of this paper is to present a 

systematic review of machine learning techniques 

mainly artificial neural networks and its comparison with 

existing empirical models. One of the most popular 

empirical models used in the industry is COCOMO for 

estimating the software effort. Although the research of 

amalgamating machine learning has started from past 

two decades, our paper mainly focuses on the latest 

machine learning procedures being proposed and 

implemented.  

MACHINE LEARNING 

 Machine learning solely focuses on writing 

softwares that can learn from past experience. A 

computer program is said to learn from experience ‘E’ 

with respect to some class of task ‘T’ and performance 

measure ‘P’, if its performance at tasks in ‘T’, as 

measured by ‘P’, improves with experience ‘E’ [Wang, 

2003]. It is an extraction of knowledge from data. 

Machine learning can be categorized into three types: 

Supervised Learning, unsupervised Learning and 

Reinforcement Learning. Supervised learning is where 

we teach; train the machine using data already available 

with the correct outcome. The more the dataset, the 

better the machine will learn about that subject. After the 

machine is trained, it will be given unseen data and 

based on the past experience it will give the outcome. 

Unsupervised learning is where the machine is trained 

using a dataset without labels. The learning algorithm is 

never told what the data represents and it infers a 

function to define hidden structure from unlabeled data. 

Reinforcement learning is the one in which training data 

is available but unlike supervised one, correct 

input/output pairs are never presented. Once the 

unlabeled data has been processed it only takes one 

example of labeled data to make the learning algorithm 

fully effective. A good example is in playing games. 

When a machine wins a game, then the result is trickled 

back along with all the moves to reinforce the validity of 

those moves.  

 We are focusing on the problem of software 

effort estimation and our goal is to create a machine 

which can mimic a human mind and to do that it needs 

learning capabilities. Once a machine is trained based on 

the above category of learning, the effort can then be 

predicted. The machine learning particularly neural 

network approaches give estimations close to human 

level estimations. 

METHODOLOGY 

 Here in this paper, Constructive Cost Model 

(COCOMO) is being used for investigation purposes. This 

regression based method to estimate effort has given by Sir 

Barry Boehm in 1981 and then to adapt to new software 

development environment, its new revised version 

COCOMOII was published. Its various parameters are from 

data of various historical projects. The procedure of effort 

estimation is performed in following steps:  

A. Preprocessing of Data 

B. Procedure Setup 

C. Selection of Input used 

D. Experimentation 

E. Evaluation Criteria 

F. Testing and Validations 

 All the models were implemented using 

standard datasets available and trained with 70 percent 

inputs as training data and rest used for testing and 

validation purposes. In the papers that areexplored, 

COCOMO 81, NASA (63), NASA (93), IBMDPS, 

Kemerer, Hallmark and Maxwell datasets are used for the 

Software development Effort Estimation. 

NEURAL NETWORK TECHNIQUES FOR 

EFFORT ESTIMATION 

 Software development Effort estimation is a 

challenging task for people associated with software 

project management. Here, in this section, we present a 

review of various neural network models for effort 

estimation proposed and implemented by many 

researchers.  

 Researcher Venkatachalam, 1993 presented 

simplified feed-forward neural network (FFNN) for 

software development effort estimation. Venkatachalam 

used back propagation neural network for estimating 

effort exhausting 22 independent variables which were 

COCOMO’s cost drivers. Evaluation criteria were not 

specified with his study. 
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 Researcher Finnie et al., 1997 presented a 

comparison of statistical regression based model with 

other artificial Intelligence based estimation models for 

estimation of software development effort. The 

Researchers found out that statistical regression model 

underperformed for intricate and complex software 

projects while the Artificial Intelligence based models 

provide agreeable estimation results. They considered 

dataset among Projects from 17 organization and 

Desharnais. MMRE was used as an evaluation criterion. 

 Another researcher Heiat, in 2002 investigated 

Feed Forward Neural Networks with function point and 

Radial Basis Neural Network with Source Lines of 

Codes for diverse datasets encompassing projects of 

varied generation languages. For every dataset 

separately, Heiat has given evaluation with regression 

model. He utilized Kemerer dataset of 15 projects and 

IBM DP service organization dataset of 24 projects for 

first investigation, and for second trial, utilized Hallmark 

dataset of 28 projects. The IBM and Kemerer projects 

are developed using third generation languages while 

Hallmark projects are developed with fourth generation 

languages. The results have shown that artificial neural 

network method is modest with regression when a third 

generation language data set is used. But in case of 

fourth generation languages data set or mixed dataset 

were used, neural network methodology works 

expressively precise for software effort estimation. 

 Another Researcher Ideri et. al.,  2006 applied 

clustering algorithms with Radial Basis Feed Forward 

Networks. For clustering the training sets, clustering 

algorithms were used and evidenced that C-means with 

Radial Basis Feed Forward Networks achieves improved 

results with APC III algorithm with Radial Basis Feed 

Forward Networks for software effort estimation. 

 In 2007, Tronto et. al., made comparisons of 

conventional linear regression model and simplified 

Feed Forward Neural Networks for Boehm’s COCOMO 

dataset. The experimentations were showed that the 

Neural Network based method accomplishes enhanced 

results as that of with linear regression model. The 

reason for improved results is due to adaptable and non-

parametric nature of neural networks. 

 In 2009, Reddy and Raju suggested a multilayer 

feed-forward neural network to accommodate the 

Boehm’s COCOMO and its parameters to estimate 

effort.  Reddy, Raju shared the complete dataset into 

training and validation set. The ratio for division of 

dataset is kept to be 80 %: 20 % respectively of total 63 

projects. The various input parameters of the COCOMO 

are accommodated  with natural logarithmic order in 

feed-forward neural network, which was a decent try to 

place together expert knowledge, project data and the 

traditional algorithmic approach into one single 

framework which is appropriate to predict effort. 

 Wong et. al. in 2008 presented a blend of neural 

nets and fuzzy logics to expand the precision of 

backfiring size estimations. The neuro-fuzzy method was 

used to attune the conversion ratios with the goal of 

minimizing the margin of error. 

 Wei et. al. in 2010 are to assess the estimate 

performance of the neuro-fuzzy model with System 

Evaluation and Estimation of Resource Software 

Estimation Model (SEERSEM) in software estimation 

practices and to apply the architecture that combines the 

neuro-fuzzy method with diverse algorithmic model. The 

results of this research also demonstrate that the general 

neuro-fuzzy structure can perform well with many 

algorithmic models for refining the performance of 

software development effort estimation 

 Another researcher used the amalgamation of 

Functional Link Artificial Neural Network (FLANN) and 

Particle swarm Optimization (PSO) algorithm for 

Software Effort Estimation [Benala et. al., 2013]. Hybrid 

PSO-FLANN architecture is a type of three-layer Feed 

Forward neural network. PSO algorithm is used to train 

the weight of FLANN vector. Calculation has been done 

on three datasets COCOMO 81, NASA63 and Maxwell. 

Hybrid algorithm increases the accuracy of the input 

vector parameters. 

 Another hybrid approach by combining 

Functional Link Artificial Neural Network (FLANN) and 

Genetic Algorithms (GA) for effort estimations were 

proposed by Benala, Dehuri in 2012. The Genetic 

Algorithm fitness function will be selected to minimize 

the error find out by evaluation criteria MMRE as shown 

in equation: 

f = 1MMRE 

 Kalichanin-Balich, 2010 relates linear 

regression, and Logarithmic regression with Feed 

Forward Neural Network. According to the test results, it 

has been witnessed that software estimate is more precise 

and genuine using FFNN rather than regression and 

logarithmic models. MMRE is used as an evaluation 

criterion. 

 Kumar V. et. al. 2008 used wavelet neural 

network (WNN) with four approaches, i.e., WNN-

morelet, WNN-guassian, TAWNN-guassian, and 

TAWNN-morelet. A Threshold acceptance training 
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algorithm is used for wavelet neural network, i.e., 

TAWNN. WNN-Morelet and WNN-

Guassianovertookvarious techniques. Results were 

efficiently improved. 

 Rao B.T. et. al., 2009 suggested a FLANN for 

software effort estimation. It generates effort and then 

processed final output layer. Its one shortcoming is that 

in this relation between inputs and outputs is not 

reasonable. 

 Kaur J. et-al. 2010 instigated a back 

propagation Artificial Neural Network of 2-2-1 design 

on NASA dataset comprises of 18 projects. Input was 

KDLOC and development methodology and effort was 

the output. MMRE was found to be 11.78 with his 

applied approach. 

 Attarzadeh and Ow, 2010 proposed a new 

model to accommodate COCOMO II. 5 Scale factors 

and 17 Effort multipliers were used as input. A sigmoid 

activation function is used to create network in order to 

accomplish post architecture COCOMOII model. Results 

shown in terms of MMRE, and Pred (0.25) to compare it 

with algorihmic COCOMO. 

 Attarzadeh et. al., 2012 projected a novel 

software development effort estimation model 

exhausting neural networks. In this, the Initial weights of 

the network were set in such a way that it lead to 

COCOMOII model. The proposed neural network model 

provides improved result as related to COCOMO model 

after appropriate training. 

 Dave and Dutta, 2011 suggested a Adjusted 

MMRE. They used NASA dataset comprises of 60 

projects. Experiments were conducted with three 

different assessment methods, i.e., Mean Magnitude 

Relative Error, Modified Mean Magnitude Relative 

Error, and Relative Standard Deviation. Three estimation 

modes are used for this purpose, i.e., Regression 

analaysis, FFNN, and RBFNN. According to authors, 

RBFNN is found to be a superior technique for effort 

estimation, on the basis of RSD and Modified MMRE. 

COCOMO II 

 Originally, the COCOMO model is given by 

Boehm in 1981. It is implemented after various 

investigation on 63 software projects [Boehm, 2000].  

This empirical model provides effort in terms of cost and 

schedule for a development of a software project. In late 

1990’s, Boehm proposed COCOMO II [Rao et. al., 2009] 

to accommodate the environmental changes in software 

industry. The purpose of COCOMO model is to express 

effort with software size and a series of cost and scale 

factors, as given in the equation below:  

PM = A. (SIZE)�.���∑ ������� 	. � EMj��
���  

 Where A is a multiplicative constant, and the set 

of SF (Scale Factor) and EM (Effort Multiplier) 

parameters which have a strong impact on calculated 

effort. 

 Moreover Size can be calculated by various 

methods like Kilo Source Lines of Code (KSLOC), 

Function Points, Extended Function Points and 

adaptation adjustment factors. 

 Maximum work has focused based on 

algorithmic cost models such as COCOMO and Function 

Points. These might undergo from the shortcoming such 

as the necessity to adjust the model to each individual 

measurement environment coupled with very variable 

accuracy levels even after calibration. 

DISCUSSION 

Table 1: Summarized methods of few Researchers 

Researcher 

(year) 

Method 

deployed 

Dataset (no. 

of projects 

Evaluation 

criteria 

Vinay Kumar et 

al (2008) 

Wavelet Neural 

Networks 

 

IBMDPS 

(24),CF 

MMRE, 

Pred(0.25), 

MdMRE 

B. Tirimula 

Rao (2009) 

C-FLANN,P-

FLANN,LFLAN

N 

NASA(60) RMSE 

Sriman 

Srichandan 

(2010) 

Radial Basis 

Functional 

Neural Networks 

COCOMO81 

(252), 

Tukutuku (53) 

MMRE, 

Pred(0.25) 

Jaswinder 

Kaur(2010) 

Back propagation 

artificial neural 

network 

NASA 
MMRE, 

RMSSE 

Iman 

Attarzadeh 

(2010) 

Back 

Propogation 

ANN 

COCOMO 

(63) 

MMRE, Pred 

(0.25) 

Vachik S. 

Dave(2011) 

RBFNN, FFNN, 

Regression 

Analysis 

cocomonasa_v

1(60) 

MMRE, 

Modified 

MMRE, 

RSD 

Iman 

Attarzadeh 

(2012) 

ANN-

COCOMOII 

COCOMO-

1(63), 

NASA93 (93) 

MMRE, 

Pred(0.25) 

Jagannath 

Singh(2012 

Cascade Forward 

ANN, Elman 

ANN, Feed 

Forward ANN, 

Recurrent ANN 

NASA(60) 

) MMRE, 

RMSE, 

Means BRE, 

Pred(0.25) 

SrimanSrichand

an(2012) 
RBFNN 

COCOMO 81, 

Tukutuku 

MMRE, 

Pred(0.25) 
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Various Performance Evaluation Criteria for Effort 

Estimation 

 The purpose of Performance evaluation criteria 

is to identify the accurate and truthful implementation of 

the effort estimation algorithms. The most significant 

evaluation measures used in software effort estimation is 

presented in table 2. 

Table 2: Significant Performance Evaluation criteria 

in effort estimation 

Evaluation Criteria Explanation 

RE� =  actual� − estimated� actual�  
Relative Error 

MRE� = RE� ∗ 100 Magnitude of 

Relative Error 

MMRE = 1N / MRE�
0

���  

Mean Magnitude 

of Relative Error 

MdMRE = Median(MRE) MdMRE is 

Median (MRE). It 

is measure for 

mean MRE error  

 

MER� =  actual� − estimated� estimated�∗ 100 

Magnitude Error 

Relative is the 

error relative to 

the estimate. 

MMER = 1N/ MER�
0

���  

Mean of all 

observations of 

MER 

MAE = 1n / actual�2
��� − estimated�| 

Mean of Absolute 

Errors 

MAPE = / 4 567859:;<=7�>57<?: 567859: @n2
��� ∗ 100 

Mean Absolute 

Percentage Error 

MSE = 1n /Aactual�2
��� − estimated�)B 

Mean Squared 

Error 

RMSE
= C1n /Aactual� − estimated�DB2

���  

Root Mean 

Square Error 

 

CONCLUSION  

 The paper presented a number of Software 

effort Estimation models based on machine learning 

techniques for the choice of suitable Artificial Neural 

Network techniques for calculating crucial effort for new 

projects. The techniques considered are MLFF, RBFFN, 

wavelet neural networks, Cascade Forward ANN, Elman 

ANN, Feed Forward ANN, Recurrent ANN etc. That 

trained and tested occurrences are considered with these 

approaches. Purpose of this entire thing is evaluating and 

comparing ANN methods with Post Architectural 

COCOMO in prediction accuracy. Studies conducted on 

Machine Learning techniques indicate that the estimated 

cost of the software with these models has more rapidity 

and precision of algorithmic models such as COCOMO 

II, which is a widely used empirical model in software 

industry. Further, effective results show that ANN 

models in the local data are improved responses in 

comparison with algorithmic models. The exploitation of 

machine learning techniques like genetic algorithms, 

fuzzy decision trees, case based reasoning, etc can also 

be applied along with these approaches for topology 

optimization and structural optimization. 
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