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ABSTRACT 

 Machine vision has many applications like medical imaging, defect detection, biometrics. The research in the above fields 

has been primarily started in the last decade. The primary aim is to reduce the cost by means of computer application so that the 

common man can access it .We have studied with fabric texture and nice result has been obtained. 
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 The class of Textiles produced from terephthalic 

acid and ethylene glycol by condensation polymerization 

has many end-uses for example these are used as filter 

fabric in railway track to prevent soil erosion, in cement 

industry these are used in boiler department as filter fabric 

to prevent the fly-ash from mixing in the atmosphere. 

Presently ,the quality checking is done by the human in 

naked eye The automation of quality check of the non-

newtonian fabric can be termed as Image Analysis or 

texture analysis problem .WE have done a Simulation 

study by the process of Image Analysis which consists of 

two steps the former is feature extraction and the second 

part is recognition. Various techniques or tools that are 

presently in   research for   texture feature extraction are 

GLCM,   Markov Random Field, Gabor filter. We have 

used here GLCM with 20 haralick features. 

 The authors   had done a simulation Study for 

defect detection and estimation by taking 25 nice sample 

and 25 defective still image samples and then extracted 28  

Haralick features .Also,20 polynomial entropy features 

were taken .When combined it has given 48 features. The 

pattern recognition problem for fault detection problem of 

Non-newtonian fluid is done by Back propagation neural 

network, Recurrent newral network, Radial basis function 

newral network and Learning Vector Quantization 

newralnetwok. 

METHODOLOGY  

The co-occurrence matrix method of texture 

description is based on the repeated occurrence of some 

gray-level configuration in the texture. We are taking a 

window of size256 x 256 go on sliding until the 

completion of the total image.   

 The texture is measured according to the 

following formulas.   

 

Here angle between two pixels α=0
0 

 Distance d=1 ,means all the gray patters at a 

pixel distances 1 are counted for calculating the frequency 

count of a particular pattern. 

 Similarly angles at different orientations are 

being considered.  The Angle  positive 135
0  

means all the 

pattern which are lying in the principal Diagonals are 

being considered 

P45
0
,d( a,b)  =  |{[(k,l),(m,n)]}Є D: 

  (k-m=d,l-n=-d)   OR  

(k-m=-d,l-n=d) f(k,l)=af(m,n)=b}| 

P90
0
,d( a,b)  =  |{[(k,l),(m,n)]}Є D: 

  |k-m|=d,l-n=0,  

f(k,l)=a,f(m,n)=b}| 

 

 The input image size for the theoretical purpose, 

the author has chosen the window size as 5 x 5.   

P135
0
,d( a,b)  =  |{[(k,l),(m,n)]} Є D: 

  (k-m=d,l-n=d)   OR  

(k-m=-d,l-n=-d), 

f(k,l)=a,f(m,n)=b}| 

P0
0
,d( a,b)   =  |{[(k,l),(m,n)]}Є D:  

  k-m=0,|l-n| (k,l)=a,f(m,n)=b}| 
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It is to be noted that P(0,0)=8,P(0,1)=2,P(0,2)=1 

P(1,0)=2,P(1,1)6,P(1,2)=2 

P(2,1)=2 

 All other P values of the 256x256 size array are 

zero for 135 degree and distance Equal to 1.Similar the 

case for all other Orientation and distances. 

Different parameters to measure texture 

� Energy  

� Contrast. 

� Hanmandlu Entropy  Function  

� maximum Probability. 

� Inverse Difference Moment 

 

Energy 

 It is defined as the angular second moment, the 

more the energy, the image is more homogeneous in the 

direction Ө. 

),(,

2

,

baP d

ba

θ∑  

a, b = gray values. 

Ө  = direction of scanning. 

d   = distance between two pixels. 

Contrast 

( )∑ −
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d

K
baPba

,

, ,θ
λ (a measure of local image 

variation.) 

K = order of moment. 

λ  = a homogeneous constant 

Polynomial Entropy  Function 

( ) ( ) ( )( )∑ ∑
≤ ≤

+++−
∧∧

=
ba dc

djIPcjiPbjiPaeI k
,10 200,

,*2,*3,*
 



ROUT ET. AL.: MACHINE VISUALIZATION FOR REAL TIME INDUSTRIAL APPLICATION

Indian J.Sci.Res. 14 (2): 34-38, 2017 

k 

ent(1) 

ent(2) 

ent(3) 

ent(4) 

ent(5) 

ent(6) 

ent(7) 

ent(8) 

ent(9) 

ent(10) 

ent(11) 

ent(12) 

ent(13) 

ent(14) 

ent(15) 

ent(16) 

ent(17) 

ent(18) 

ent(19) 

ent(20) 

 

Maximum Probability 

( )

( )∑
ba

d

d
ba

baP

baP

,

,

,
,

,

,max

θ

θ

 

0<= a,b<=255 

Pattern (a,b) occurs frequently 

2.5. Homogenity 
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Where , ,x y x yandµ µ σ σ are the means and standard 

deviation of xp and yp . yp is the transpose of 

Defect Detection by Artificial Neural Network

 We have got 7 x 4 Haralik features in 4 

orientation totals into 28 features.  We have got 20 

Hanmandulu features, total into (20+28) 48 features.  The 

database for the 48 features is shown in figure

are 50 patterns. 

Figure 1: Feature Data Base
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are the means and standard 

is the transpose of xp .   

Defect Detection by Artificial Neural Network 

We have got 7 x 4 Haralik features in 4 

orientation totals into 28 features.  We have got 20 

Hanmandulu features, total into (20+28) 48 features.  The 

database for the 48 features is shown in figure-1.  There 

 

Feature Data Base 
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Supervised Machine Learning By Artificial Neural 

Network. 

 The above features selection was done by 

Choudhury D.K., Hanmandlu.Met al [10,11] had done the 

feature Selection by GLCM and Classified by Minimum 

distance Classifier. 

 We are doing classification by four ANN 

Techniques i.e Back propagation, Recurrent Neural 

Network, earning Vector Quantization and Radial Basis 

function.  In this experiment we have got total 50 tuples 

having (48 +1) fields.   

 Defective samples are lying between recno(1) to 

recno(25).Nice samples are  lying between recno(26) to 

recno(50) .Each of the above record contains 48 

features.The 49
th

 column contains the class level. The 

classlevel -1 (recno(1-25) is for defective samples and 

+1(26-50) is for nice samples. In the present machine 

learning expt. Supervised Learning is followed. Recno(1-

18 & 26-43) are kept for training the machine. Recno(19-

25) & (44-50) are kept for testing the samples. 

 Four types of Artificial Neural Networks are 

utilized for testing the samples.They are 

a. Backpropagation Algorithm(BPN) 

b. Recurrent Neural Algorithm(RNN) 

c. Radial basis function Algorithm(RBF) 

d. Learning Vector Quantization Algorithm(LVQ)  

RESULT AND DISCUSSION 

TYPE OF ANN BNN RNN LVQ RBF 

CO-

OCCURRENCE 

MATRIX 

90% 96% 85% 60% 

 

 Form the Above experiment.  It was concluded 

that RNN gives the best Result. Presently an Prototype 

ROBOT is being tried.  

CONCLUSION 

 The above experiments can be extended to multi-

class defect detection of fabrics having different types of 

defects.  It will be convenient for detecting a particular 

defect which occurs frequently.   
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