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Abstract—With the advent of wearable computing and the resulting growth in mobile application market, we investigate 

mobile opportunistic cloud computing where mobile devices leverage nearby computational resources in order to save 

execution time and consumed energy. We propose enabling generic computa-tional offloading to heterogeneous devices 

that include Cloud, mobile devices, and cloudlets. We propose a generic and flexible architecture that maximizes the 

computational gain with respect to variant metrics such as minimizing the response time, reducing the overall energy 

consumption and increasing the network life-time. This novel architecture is designed to automate computation offloading 

to various compute resources over disrupted network connections due to the nature of mobile devices. 
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I. Introduction 

Mobile devices, such as smartphones and tablets, are in-

creasingly capable devices with processing and storage ca-

pabilities that make significant step improvements with ev-

ery generation. Yet, various application tasks, such as face 

recognition, body language interpretation, speech and 

object recognition, and natural language processing, 

exceed the lim-its of stand-alone mobile devices. Such 

applications resort to exploiting data and computational 

resources such as the Cloud [1], [2]. By 2018, mobile 

cloud applications will account for 90% of total mobile 

data traffic which represents an annual growth rate of 64% 

[3]. 

Various solutions for computation offloading to more pow-

erful surrogate machines [4], known as cyber-foraging [5] 

[6], have been proposed such as CloneCloud [7] and 

MAUI [8]. In addition, and due to the significant impact of 

large RTT’s on energy consumed by mobile devices while 

offloading to distant clouds, researchers proposed bringing 

computational resources, known as cloudlets [9] closer to 

mobile devices. Others, such as Cirrus [10], and 

Serendipity [11] take some steps towards computational 

offloading to neighboring mobile devices which we refer 

to as Mobile Device Clouds (MDC). Also, with processing 

capacity of mobile devices being mostly unused [12], 

mobile devices, individually and in clusters, form a 

potentially significant computational resource that can be 

tapped at low cost and with low latency. Mtibaa et al. [13] 

discuss offloading algorithms to neighboring mobile 

devices to ensure a fair consumption of energy across a 

group of mobile devices belonging to the same individual 

or household. 

In this paper, we aim at rethinking the perspective of 

compu-tational offloading from default mobile to cloud 

techniques tai-lored for certain applications, to a more 

dynamic and adaptive peer-to-peer offloading architecture. 

This novel architecture conducts offloading decisions 

based on a set of parameters thatdefine the nature of the 

offloading opportunities available and make the best 

decision based on potentially conflicting user objectives. 

We propose a generic computational offloading 

architecture over heterogeneous devices that include 

mobile MDCs, cloudlets, and clouds. We address specific 

challenges remaining in each of these options, along with 

their integration into a single offloading architecture. We 

also design and im-plement an offloading manager proof-

of-concept prototype and present basic performance 

analysis that outperform offloading to only one computing 

candidate. 

II. Opportunistic Computing Spectrum 

The spectrum of computational opportunities will be gov-

erned by two dimensions: computation and communication 

opportunities. 

A. Computation Opportunities 

With typical node mobility, we envision a spectrum of 

computational contexts, some of which are shown in Fig. 

1. At one extreme, we have the traditional cloud-

computing context where devices are intermittently 

connected to distant cloud resources as shown in Fig. 1(a). 

We also exploit cloudlets[9] on which we dynamically 

instantiate the service software to enable mobile device 

computation offloading as shown in Fig. 1(b). The original 

cloudlet concept implicitly constrains the offloading of 

computation to a single cloudlet. In our pro-posed work, 

we also consider the case when the mobile device is 

intermittently connected to a set of cloudlet-like resources 

which we call mobile Cloudlets as shown in Fig. 1(c). At 
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the other extreme of the spectrum, is the domain least 

explored in literature where mobile devices directly 

contact other mobile devices (MDC), as shown in Fig. 

1(d). 

We believe that the offloader’s (i.e., the task initiator) 

envi-ronment for remote computation will be, in the most 

general case, a hybrid of such computational contexts and 

systems. Therefore, mobile devices need to discover the 

capabilities of their environment and adapt their remote 

computation decisions accordingly. 

B. Communication Opportunities 

Computation opportunities listed above exhibit different 

communication challenges that range from stable wired 

com-munication with Cloud, to heterogeneous intermittent 

multi-hop connectivity in the case of MDCs. Computation 

tasks need to be potentially routed to specific devices 

depending on the application, with the premise that results 

need to be returned back to the initiator. Such requirement 

will impact 

 

Fig. 1.  Opportunistic Computing Spectrum 

decision making regarding which routes and devices to 

choose when offloading a task. We list three main 

challenges of our opportunistic computing solutions: 

1) Intermittent connectivity: First, since the underlying 

connectivity is often variable and unknown, it is difficult 

to map computations to various nodes with a guarantee 

that the necessary code and data can be delivered and the 

results are received in a timely fashion. This leads to a 

conservative ap-proach for distributing computation geared 

towards providing protection against future network 

disruptions. Second, because the network bandwidth is 

intermittent, it is more likely to be a bottleneck for the 

successful completion of the offloaded task execution. 

This suggests avoiding data needed for the next 

computation traversing the network while scheduling 

sequen-tial computations on the same chosen node. Third, 

without reliable control channels, the network cannot be 

relied upon to provide reachability to all nodes which 

would be needed for coordination and control. This 

suggests maintaining local control and developing 

mechanisms for loose coordination.  

2) Partitioning and remote execution: Mobile 

applications’ execution across multiple devices introduces 

challenges on partitioning the task execution between the 

devices efficiently, automatically, and optimally. We aim 

at providing significantly more flexibility in application 

partitioning. For instance, a given partitioning strategy that 

can be optimal in one scenario might perform poorly in 

another. Connectivity characteristics as well as device 

capabilities are generally unknown to appli-cations’ 

programmers, or the possible configurations render it too 

difficult to customize.  

3) A Common Architecture for computational offloading:  

Addressing the application partitioning challenge above re-

quires a framework that would enable adaptive and 

potentially real time decisions of sub-task allocation. 

Allocation decisions depend heavily on the sub-tasks 

profiling in terms of commu-nication requirements, 

running time, and power consumption.  

III. Opportunistic Computing Architecture 

Computational resources are heterogeneous and should co-

operate in an opportunistic mobile computing environment 

where a mobile device can choose between all 

computational offloading opportunities based on given 

metrics. By abstracting all compute resources, our 

proposed architecture achieves such flexibility and 

maximizes the computational gain with respect to different 

metrics such as minimizing the response time, reducing the 

overall energy consumption, and increasing the network 

lifetime. 

Our system architecture, illustrated in Fig. 2, is designed to 

(i) automate computation offloading to various compute 

resources, and (ii) accommodate computation offloading 

over disrupted network connections due to the nature of 

mobile devices. It consists of different components that 

work together to answer two main questions: for a given 

task T consisting of D data input and C computation 

requirements, (iii) which compute resource is more 

suitable to run this task?, and if of-floading is required, 

given available connectivity opportunities and resources, 

when and how do a we offload the task? 

Our mobile opportunistic computing architecture consists 

of a task profiler, offloading manager, routing manager, 

task scheduler, set of computing resources, and a set of 

databases. 

The Task Profiler is responsible for profiling each task and 

its allocated resources. It receives a task T from a 

mobiledevice application, and decomposes it (if 

applicable) into k subtasks Ti; i=  1::k. Each subtask is 
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then profiled asa combination of DTi a data input, and CTi 

computation requirements, then it will be forwarded to the 

Offloading Manager. 

The Offloading Manager is the heart of this architecture. It 

implements a resource discovery and estimation manager 

that (1) discovers available resources, and (2) estimates the 

availability of the resources in the near future. It scans and 

detects all available resources across all available 

interfaces and models each as a virtual interface. Once the 

virtual interface is discovered, the resource discovery and 

estimation manager estimates the computation resources of 

each virtual interface (i.e., the available energy, actual cpu 

and memory utilization, the interface utilization cost, and 

the available bandwidth). The offloading manager will 

implement a utility maximization algorithm that compares 

user-customized gains for each of the 4 main compute 

resources: 

1) Compute locally: Tasks run locally on the mobile 

device. The device stores (in the Device Capabilities 

and the Energy Profiling databases) a history of 

previous task performances on the device, and 

estimates the perfor-mance of a given task based on 

similar history tasks.  

2) Cloudlet/Mobile Cloudlet: The device offloads the 

task to a nearby cloudlet. Cloudlets are generally 

resources characterized by their short RTT 

connections and high throughput. The connection 

with such devices is subject to high disruption. The 

architecture provides a con-nection stability 

estimation algorithm that predicts the disruption 

factor between the device and cloudlets. 

 

Fig. 2.  Mobile opportunistic computing high level 

architecture. 

3) MDC: Offloading to other mobile devices. MDC’s 

main goal is to leverage nearby computational 

resources in order to reducing energy costs or 

execution time by bringing task executors closer to 

mobile task initiators. MDC is motivated by the fact 

that processing capacity of mobile devices being 

mostly unused and idle most of the time [12].  

4) Cloud: Offload to data centers characterized by their 

“unlimited” power, storage, and computational re-

sources. These resources are usually costly since they 

adopt the pay-as-you-go paradigm. The connection to 

a distant cloud is characterized by higher RTT, leading 

to high energy consumption, and high disruption rates.  

The Offloading Manager decides whether or not a given 

task needs be offloaded or locally executed depending on 

the characteristics of this task and the capabilities of the 

local peer. First, it interacts with the privacy and security 

engine in order to check if the task T is eligible for 

offloading or not. It then runs a set of objective functions 

that compare running the task T locally or migrating it to 

other neighboring resources with minimum resource 

capabilities Rmin = fEmin; Cmin; Sming within t, where Emin; 

Cmin, and Smin represent the mini-mum expected energy, 

computation, and storage capabilities respectively on the 

neighboring compute resource peers. Once the offloading 

decision is made, subtasks will be forwarded to the 

Resource Allocation manager. The resource manager 

requests, therefore, the allocation of resources for 

guaranteed tasks (i.e., high priority tasks) upon negotiating 

the resources that will be used to execute a given task. It 

also sends a request to free the resources allocated for a 

particular task if the task is completed or when it received 

an error signal from the forwarding manager via its fault 

tolerance engine. 

The Routing & Replication Manager is responsible for 

routing computation tasks to a particular device, with the 

premise that results need to be returned back to the initia-

tor. Such requirement will impact decision making 

regarding which routes and devices to choose when 

offloading a task. 

Contact unpredictability adds two main challenges which 

are (i) the unpredictable duration of a contact makes the 

decision of whether such contact is long enough or not to 

complete the process of handing off the computation 

subtask, waiting for it to complete on the remote device 

and receiving the result, and (ii) the unpredictable waiting 

time for an eventual contact. The routing engine 

implements different techniques that help the initiator 

mobile device classify each contact and estimate its 

duration and the waiting time to meet the next computing 

entity. It also decides whether or not a task can be 

replicated in order to ensure success delivery within a 

given delay. 

The Task Scheduler schedules the subtasks belonging to 

each task to multiple compute resources. It maintains the 

status of each task and subtask and dispatches them to 

either local compute resources or to the forwarding engine 
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to be executed remotely. It also implements a failure 

recovery engine to re-assign a delayed task to other 

compute resources based on their initial rank given by the 

offload manager. The manager also receives tasks from 

neighboring mobile opportunistic computing peers for 

local execution, it therefore forwards the task to the local 

computing resources and forwards the results back to the 

forwarding engine. 

The Forwarding Manager is responsible for exchanging 

tasks and resource history statistics with neighboring 

compute resources. It updates the databases with up-to-

date connectivity stats with new and existing neighbors. 

Upon receiving an order to migrate the task to distant 

devices, the forwarder selects the most suitable devices to 

run the task T within the given time and resource 

constraints. It uses stored information about historical 

contact summaries and social information to infer the 

expected connection and inter-connection duration 

between neighboring devices. The forwarder is also 

receiving tasks from neighboring forwarder engines. In 

this case, it forwards the task to the task scheduler then to 

the local Computing Resources. 

Quality of Service (QoS) monitors error rates and 

providing different levels of guarantees on the completion 

time expected for particular tasks. These tasks or 

applications have gen-erally different priority levels. 

Therefore, our scheme aims at managing tasks so that top 

priority applications will not be compromised. It manages 

the use of resources using a priority scheme that classifies 

tasks (high, moderate, and low priority) and replicates the 

most critical tasks to multiple offloadee nodes in order to 

reduce the error rate and reduce the latency. The fault 

tolerance module implements a proactive and a reactive 

technique to deal with task execution errors. The proactive 

approach involves predicting connectivity failure with a set 

of offloadee devices and replicates some tasks in order to 

avoid unnecessary waiting delays. The reactive approach, 

however, involves initiating a fast recovery upon detecting 

(or predicting) a task execution failure. 

The Computing Resources represent a basic abstraction of 

the processing capabilities that exist on an opportunistic 

computing peer device. If the task is scheduled for local 

execution, it arrives to the computing resources for 

immediate execution. However, in case of remote 

execution, the task will 

be forwarded to a selected remote device then to its task 

scheduler which will forward it to its computing resources 

for remote execution on the remote device. Once the task 

executed, results will be sent back to the task scheduler 

and then to the offloader’s task manager and then to the 

application. 

IV. Implementation Prototype & Results 

As a first step towards implementing and testing our peer-

to-peer architecture, we design and implement the 

following modules described earlier: the offloading 

manager and the task scheduler. 

A. Proof-Of-Concept Prototype 

Our prototype is implemented as an android application 

installed on all devices regardless of their nature (i.e., 

offloader or offloadee). Our application allows users to 

activate or deactivate the collaboration mode at any time 

(i.e., users’ wiliness to offer their computational resources 

for others). Collaborating users specify the wireless 

technologies that can be used by the application. The task 

scheduler then determines which technology (from those 

specified) can be used to maximize the utility function. In 

this prototype, we consider minimizing the total execution 

time. 

We create dummy tasks at the offloader device. Theses 

tasks can either be executed locally or offloaded to one or 

multiple remote devices (offloadee). Each task consists of 

computation requirements (measured in FLOPs) as well as 

input and output data (measured in Bytes). Fig. 3-(a) 

shows a snapshot of our prototype user interface where the 

offloadee node specifies the maximum number of threads 

allowed to run on its device and the offloader node runs a 

set of tasks with specific parameters and arrival times as 

stated in a scenario file. 

 

(a) Protype snapshot (b) Experimental results 

Fig. 3.  Proof-of-concept implementation and results 

B. Experiment & Preliminary Results 

In our experiment, we consider a network of three mobile 

devices: a Galaxy S5 (GS5) running Android 4.4.4, a 

Nexus 7 (N7), and a Nexus 10 (N10) running Android 

5.0.2. GS5 has 3 tasks t1; t2; t3. We first measure the 

required time to run these tasks locally without offloading 

to any other device. As shown in Fig. 3-(b), the GS5 

requires more than 90s to executestheses tasks sequentially 

with an average of 30s for each task. However, GS5 

achieves a 3 speedup while offloading 2 ofthese tasks to 

computationally more powerful nearby devices such as the 

N7 and the N10. It, therefore executes all tasks in only 

31.24s using our prototype. Our prototype application 

distributes the tasks as follow: t1 is offloaded to N10 taking 
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only 8.7s to run, t2 is offloaded to N7 which executes it in 

14.1s, and the GS5 locally executes t3 in 31.2s. In this 

experiment, our prototype uses WiFi Direct and a round 

robin algorithm that assigns tasks to each encountered 

device. 

V. Conclusion And Future Work 

This paper discusses a novel peer-to-peer architecture for 

mobile opportunistic offloading. It presents a detailed 

archi-tecture consisting of multiple modules responsible 

for routing, scheduling, discovering, securing, and 

incentivizing remote computational offloading. We have 

also implemented a proof-of-concept prototype running on 

android devices. Our pre-liminary prototype achieves 3 

speedup in execution time using only 3 mobile devices. 

We plan to develop, test, and evaluate the architecture 

proposed in this paper. We will propose a multitude of 

algorithms to investigate different routing strategies, 

objective functions, incentive systems, and QoS and 

Guarantee models. 
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