
Indian J.Sci.Res. 17(2): 536 - 540, 2018 ISSN: 0976-2876 (Print)

 ISSN: 2250-0138(Online)

1Corresponding Author

TOWARDS MOBILE OPPORTUNISTIC IN CLOUD COMPUTING

1
P.Pratheepkumar,

2
J. Josephine Sharmila,

3
Dr. D. Arokiaraj

1
Department of Computer Science, NIFT-TEA College of Knitwear Fashion, Bharathiar University, Tirupur,

Tamilnadu
2
Department of Electronics and Communication Engineering, DMI Engineering College, Kanyakumari,

Tamilnadu
3
Department of Management Studies, Aurora’s PG College, Ramanthapur, Hyderabad, Telangana

Abstract—With the advent of wearable computing and the resulting growth in mobile application market, we investigate

mobile opportunistic cloud computing where mobile devices leverage nearby computational resources in order to save

execution time and consumed energy. We propose enabling generic computa-tional offloading to heterogeneous devices

that include Cloud, mobile devices, and cloudlets. We propose a generic and flexible architecture that maximizes the

computational gain with respect to variant metrics such as minimizing the response time, reducing the overall energy

consumption and increasing the network life-time. This novel architecture is designed to automate computation offloading

to various compute resources over disrupted network connections due to the nature of mobile devices.

Keywords: cloud lets,computational gain.

I. Introduction

Mobile devices, such as smartphones and tablets, are in-

creasingly capable devices with processing and storage ca-

pabilities that make significant step improvements with ev-

ery generation. Yet, various application tasks, such as face

recognition, body language interpretation, speech and

object recognition, and natural language processing,

exceed the lim-its of stand-alone mobile devices. Such

applications resort to exploiting data and computational

resources such as the Cloud [1], [2]. By 2018, mobile

cloud applications will account for 90% of total mobile

data traffic which represents an annual growth rate of 64%

[3].

Various solutions for computation offloading to more pow-

erful surrogate machines [4], known as cyber-foraging [5]

[6], have been proposed such as CloneCloud [7] and

MAUI [8]. In addition, and due to the significant impact of

large RTT’s on energy consumed by mobile devices while

offloading to distant clouds, researchers proposed bringing

computational resources, known as cloudlets [9] closer to

mobile devices. Others, such as Cirrus [10], and

Serendipity [11] take some steps towards computational

offloading to neighboring mobile devices which we refer

to as Mobile Device Clouds (MDC). Also, with processing

capacity of mobile devices being mostly unused [12],

mobile devices, individually and in clusters, form a

potentially significant computational resource that can be

tapped at low cost and with low latency. Mtibaa et al. [13]

discuss offloading algorithms to neighboring mobile

devices to ensure a fair consumption of energy across a

group of mobile devices belonging to the same individual

or household.

In this paper, we aim at rethinking the perspective of

compu-tational offloading from default mobile to cloud

techniques tai-lored for certain applications, to a more

dynamic and adaptive peer-to-peer offloading architecture.

This novel architecture conducts offloading decisions

based on a set of parameters thatdefine the nature of the

offloading opportunities available and make the best

decision based on potentially conflicting user objectives.

We propose a generic computational offloading

architecture over heterogeneous devices that include

mobile MDCs, cloudlets, and clouds. We address specific

challenges remaining in each of these options, along with

their integration into a single offloading architecture. We

also design and im-plement an offloading manager proof-

of-concept prototype and present basic performance

analysis that outperform offloading to only one computing

candidate.

II. Opportunistic Computing Spectrum

The spectrum of computational opportunities will be gov-

erned by two dimensions: computation and communication

opportunities.

A. Computation Opportunities

With typical node mobility, we envision a spectrum of

computational contexts, some of which are shown in Fig.

1. At one extreme, we have the traditional cloud-

computing context where devices are intermittently

connected to distant cloud resources as shown in Fig. 1(a).

We also exploit cloudlets[9] on which we dynamically

instantiate the service software to enable mobile device

computation offloading as shown in Fig. 1(b). The original

cloudlet concept implicitly constrains the offloading of

computation to a single cloudlet. In our pro-posed work,

we also consider the case when the mobile device is

intermittently connected to a set of cloudlet-like resources

which we call mobile Cloudlets as shown in Fig. 1(c). At

TOWARDS MOBILE OPPORTUNISTIC IN CLOUD COMPUTING

Indian J.Sci.Res. 17(2): 536 - 540, 2018

the other extreme of the spectrum, is the domain least

explored in literature where mobile devices directly

contact other mobile devices (MDC), as shown in Fig.

1(d).

We believe that the offloader’s (i.e., the task initiator)

envi-ronment for remote computation will be, in the most

general case, a hybrid of such computational contexts and

systems. Therefore, mobile devices need to discover the

capabilities of their environment and adapt their remote

computation decisions accordingly.

B. Communication Opportunities

Computation opportunities listed above exhibit different

communication challenges that range from stable wired

com-munication with Cloud, to heterogeneous intermittent

multi-hop connectivity in the case of MDCs. Computation

tasks need to be potentially routed to specific devices

depending on the application, with the premise that results

need to be returned back to the initiator. Such requirement

will impact

Fig. 1. Opportunistic Computing Spectrum

decision making regarding which routes and devices to

choose when offloading a task. We list three main

challenges of our opportunistic computing solutions:

1) Intermittent connectivity: First, since the underlying

connectivity is often variable and unknown, it is difficult

to map computations to various nodes with a guarantee

that the necessary code and data can be delivered and the

results are received in a timely fashion. This leads to a

conservative ap-proach for distributing computation geared

towards providing protection against future network

disruptions. Second, because the network bandwidth is

intermittent, it is more likely to be a bottleneck for the

successful completion of the offloaded task execution.

This suggests avoiding data needed for the next

computation traversing the network while scheduling

sequen-tial computations on the same chosen node. Third,

without reliable control channels, the network cannot be

relied upon to provide reachability to all nodes which

would be needed for coordination and control. This

suggests maintaining local control and developing

mechanisms for loose coordination.

2) Partitioning and remote execution: Mobile

applications’ execution across multiple devices introduces

challenges on partitioning the task execution between the

devices efficiently, automatically, and optimally. We aim

at providing significantly more flexibility in application

partitioning. For instance, a given partitioning strategy that

can be optimal in one scenario might perform poorly in

another. Connectivity characteristics as well as device

capabilities are generally unknown to appli-cations’

programmers, or the possible configurations render it too

difficult to customize.

3) A Common Architecture for computational offloading:

Addressing the application partitioning challenge above re-

quires a framework that would enable adaptive and

potentially real time decisions of sub-task allocation.

Allocation decisions depend heavily on the sub-tasks

profiling in terms of commu-nication requirements,

running time, and power consumption.

III. Opportunistic Computing Architecture

Computational resources are heterogeneous and should co-

operate in an opportunistic mobile computing environment

where a mobile device can choose between all

computational offloading opportunities based on given

metrics. By abstracting all compute resources, our

proposed architecture achieves such flexibility and

maximizes the computational gain with respect to different

metrics such as minimizing the response time, reducing the

overall energy consumption, and increasing the network

lifetime.

Our system architecture, illustrated in Fig. 2, is designed to

(i) automate computation offloading to various compute

resources, and (ii) accommodate computation offloading

over disrupted network connections due to the nature of

mobile devices. It consists of different components that

work together to answer two main questions: for a given

task T consisting of D data input and C computation

requirements, (iii) which compute resource is more

suitable to run this task?, and if of-floading is required,

given available connectivity opportunities and resources,

when and how do a we offload the task?

Our mobile opportunistic computing architecture consists

of a task profiler, offloading manager, routing manager,

task scheduler, set of computing resources, and a set of

databases.

The Task Profiler is responsible for profiling each task and

its allocated resources. It receives a task T from a

mobiledevice application, and decomposes it (if

applicable) into k subtasks Ti; i= 1::k. Each subtask is

TOWARDS MOBILE OPPORTUNISTIC IN CLOUD COMPUTING

Indian J.Sci.Res. 17(2): 536 - 540, 2018

then profiled asa combination of DTi a data input, and CTi

computation requirements, then it will be forwarded to the

Offloading Manager.

The Offloading Manager is the heart of this architecture. It

implements a resource discovery and estimation manager

that (1) discovers available resources, and (2) estimates the

availability of the resources in the near future. It scans and

detects all available resources across all available

interfaces and models each as a virtual interface. Once the

virtual interface is discovered, the resource discovery and

estimation manager estimates the computation resources of

each virtual interface (i.e., the available energy, actual cpu

and memory utilization, the interface utilization cost, and

the available bandwidth). The offloading manager will

implement a utility maximization algorithm that compares

user-customized gains for each of the 4 main compute

resources:

1) Compute locally: Tasks run locally on the mobile

device. The device stores (in the Device Capabilities

and the Energy Profiling databases) a history of

previous task performances on the device, and

estimates the perfor-mance of a given task based on

similar history tasks.

2) Cloudlet/Mobile Cloudlet: The device offloads the

task to a nearby cloudlet. Cloudlets are generally

resources characterized by their short RTT

connections and high throughput. The connection

with such devices is subject to high disruption. The

architecture provides a con-nection stability

estimation algorithm that predicts the disruption

factor between the device and cloudlets.

Fig. 2. Mobile opportunistic computing high level

architecture.

3) MDC: Offloading to other mobile devices. MDC’s

main goal is to leverage nearby computational

resources in order to reducing energy costs or

execution time by bringing task executors closer to

mobile task initiators. MDC is motivated by the fact

that processing capacity of mobile devices being

mostly unused and idle most of the time [12].

4) Cloud: Offload to data centers characterized by their

“unlimited” power, storage, and computational re-

sources. These resources are usually costly since they

adopt the pay-as-you-go paradigm. The connection to

a distant cloud is characterized by higher RTT, leading

to high energy consumption, and high disruption rates.

The Offloading Manager decides whether or not a given

task needs be offloaded or locally executed depending on

the characteristics of this task and the capabilities of the

local peer. First, it interacts with the privacy and security

engine in order to check if the task T is eligible for

offloading or not. It then runs a set of objective functions

that compare running the task T locally or migrating it to

other neighboring resources with minimum resource

capabilities Rmin = fEmin; Cmin; Sming within t, where Emin;

Cmin, and Smin represent the mini-mum expected energy,

computation, and storage capabilities respectively on the

neighboring compute resource peers. Once the offloading

decision is made, subtasks will be forwarded to the

Resource Allocation manager. The resource manager

requests, therefore, the allocation of resources for

guaranteed tasks (i.e., high priority tasks) upon negotiating

the resources that will be used to execute a given task. It

also sends a request to free the resources allocated for a

particular task if the task is completed or when it received

an error signal from the forwarding manager via its fault

tolerance engine.

The Routing & Replication Manager is responsible for

routing computation tasks to a particular device, with the

premise that results need to be returned back to the initia-

tor. Such requirement will impact decision making

regarding which routes and devices to choose when

offloading a task.

Contact unpredictability adds two main challenges which

are (i) the unpredictable duration of a contact makes the

decision of whether such contact is long enough or not to

complete the process of handing off the computation

subtask, waiting for it to complete on the remote device

and receiving the result, and (ii) the unpredictable waiting

time for an eventual contact. The routing engine

implements different techniques that help the initiator

mobile device classify each contact and estimate its

duration and the waiting time to meet the next computing

entity. It also decides whether or not a task can be

replicated in order to ensure success delivery within a

given delay.

The Task Scheduler schedules the subtasks belonging to

each task to multiple compute resources. It maintains the

status of each task and subtask and dispatches them to

either local compute resources or to the forwarding engine

TOWARDS MOBILE OPPORTUNISTIC IN CLOUD COMPUTING

Indian J.Sci.Res. 17(2): 536 - 540, 2018

to be executed remotely. It also implements a failure

recovery engine to re-assign a delayed task to other

compute resources based on their initial rank given by the

offload manager. The manager also receives tasks from

neighboring mobile opportunistic computing peers for

local execution, it therefore forwards the task to the local

computing resources and forwards the results back to the

forwarding engine.

The Forwarding Manager is responsible for exchanging

tasks and resource history statistics with neighboring

compute resources. It updates the databases with up-to-

date connectivity stats with new and existing neighbors.

Upon receiving an order to migrate the task to distant

devices, the forwarder selects the most suitable devices to

run the task T within the given time and resource

constraints. It uses stored information about historical

contact summaries and social information to infer the

expected connection and inter-connection duration

between neighboring devices. The forwarder is also

receiving tasks from neighboring forwarder engines. In

this case, it forwards the task to the task scheduler then to

the local Computing Resources.

Quality of Service (QoS) monitors error rates and

providing different levels of guarantees on the completion

time expected for particular tasks. These tasks or

applications have gen-erally different priority levels.

Therefore, our scheme aims at managing tasks so that top

priority applications will not be compromised. It manages

the use of resources using a priority scheme that classifies

tasks (high, moderate, and low priority) and replicates the

most critical tasks to multiple offloadee nodes in order to

reduce the error rate and reduce the latency. The fault

tolerance module implements a proactive and a reactive

technique to deal with task execution errors. The proactive

approach involves predicting connectivity failure with a set

of offloadee devices and replicates some tasks in order to

avoid unnecessary waiting delays. The reactive approach,

however, involves initiating a fast recovery upon detecting

(or predicting) a task execution failure.

The Computing Resources represent a basic abstraction of

the processing capabilities that exist on an opportunistic

computing peer device. If the task is scheduled for local

execution, it arrives to the computing resources for

immediate execution. However, in case of remote

execution, the task will

be forwarded to a selected remote device then to its task

scheduler which will forward it to its computing resources

for remote execution on the remote device. Once the task

executed, results will be sent back to the task scheduler

and then to the offloader’s task manager and then to the

application.

IV. Implementation Prototype & Results

As a first step towards implementing and testing our peer-

to-peer architecture, we design and implement the

following modules described earlier: the offloading

manager and the task scheduler.

A. Proof-Of-Concept Prototype

Our prototype is implemented as an android application

installed on all devices regardless of their nature (i.e.,

offloader or offloadee). Our application allows users to

activate or deactivate the collaboration mode at any time

(i.e., users’ wiliness to offer their computational resources

for others). Collaborating users specify the wireless

technologies that can be used by the application. The task

scheduler then determines which technology (from those

specified) can be used to maximize the utility function. In

this prototype, we consider minimizing the total execution

time.

We create dummy tasks at the offloader device. Theses

tasks can either be executed locally or offloaded to one or

multiple remote devices (offloadee). Each task consists of

computation requirements (measured in FLOPs) as well as

input and output data (measured in Bytes). Fig. 3-(a)

shows a snapshot of our prototype user interface where the

offloadee node specifies the maximum number of threads

allowed to run on its device and the offloader node runs a

set of tasks with specific parameters and arrival times as

stated in a scenario file.

(a) Protype snapshot (b) Experimental results

Fig. 3. Proof-of-concept implementation and results

B. Experiment & Preliminary Results

In our experiment, we consider a network of three mobile

devices: a Galaxy S5 (GS5) running Android 4.4.4, a

Nexus 7 (N7), and a Nexus 10 (N10) running Android

5.0.2. GS5 has 3 tasks t1; t2; t3. We first measure the

required time to run these tasks locally without offloading

to any other device. As shown in Fig. 3-(b), the GS5

requires more than 90s to executestheses tasks sequentially

with an average of 30s for each task. However, GS5

achieves a 3 speedup while offloading 2 ofthese tasks to

computationally more powerful nearby devices such as the

N7 and the N10. It, therefore executes all tasks in only

31.24s using our prototype. Our prototype application

distributes the tasks as follow: t1 is offloaded to N10 taking

TOWARDS MOBILE OPPORTUNISTIC IN CLOUD COMPUTING

Indian J.Sci.Res. 17(2): 536 - 540, 2018

only 8.7s to run, t2 is offloaded to N7 which executes it in

14.1s, and the GS5 locally executes t3 in 31.2s. In this

experiment, our prototype uses WiFi Direct and a round

robin algorithm that assigns tasks to each encountered

device.

V. Conclusion And Future Work

This paper discusses a novel peer-to-peer architecture for

mobile opportunistic offloading. It presents a detailed

archi-tecture consisting of multiple modules responsible

for routing, scheduling, discovering, securing, and

incentivizing remote computational offloading. We have

also implemented a proof-of-concept prototype running on

android devices. Our pre-liminary prototype achieves 3

speedup in execution time using only 3 mobile devices.

We plan to develop, test, and evaluate the architecture

proposed in this paper. We will propose a multitude of

algorithms to investigate different routing strategies,

objective functions, incentive systems, and QoS and

Guarantee models.

References

[1] R. Kemp, N. Palmer, T. Kielmann, and H. Bal,

“Cuckoo: a computation offloading framework for

smartphones,” in Mobile Computing, Applica-tions,

and Services. Springer, 2012, pp. 59–79.

[2] M. Satyanarayanan, “A brief history of cloud

offload: A personal journey from odyssey through

cyber foraging to cloudlets,” SIGMOBILE Mob.

Comput. Commun. Rev., vol. 18, no. 4, pp. 19–23,

Jan. 2015. [Online]. Available:

http://doi.acm.org/10.1145/2721914.2721921

[3] T. Cisco, “Cisco visual networking index: Global

mobile data traffic forecast update, 2012–2017,”

Cisco Public Information, 2013.

[4] J. Flinn, “Cyber foraging: Bridging mobile and

cloud computing,” Synthesis Lectures on Mobile

and Pervasive Computing, vol. 7, no. 2, pp. 1–103,

2012.

[5] R. Balan, J. Flinn, M. Satyanarayanan, S.

Sinnamohideen, and H.-I. Yang, “The case for cyber

foraging,” in Proceedings of the 10th workshop on

ACM SIGOPS European workshop, 2002.

[6] R. K. Balan, D. Gergle, M. Satyanarayanan, and J.

Herbsleb, “Simpli-fying cyber foraging for mobile

devices,” in ACM MobiSys, 2007.

[7] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A.

Patti, “Clonecloud: elastic execution between

mobile device and cloud,” in Proceedings of the

sixth conference on Computer systems, ser. EuroSys

’11. New York, NY, USA: ACM, 2011, pp. 301–

314. [Online]. Available:

http://doi.acm.org/10.1145/1966445.1966473

[8] E. Cuervo, A. Balasubramanian, D. ki Cho, A.

Wolman, S. Saroiu, R. Chandra, and P. Bahl, “Maui:

making smartphones last longer with code offload,”

in MobiSys’10, 2010, pp. 49–62.

[9] M. Satyanarayanan, P. Bahl, R. Caceres, and N.

Davies, “The case for vm-based cloudlets in mobile

computing,” Pervasive Computing, IEEE, vol. 8, no.

4, pp. 14–23, 2009.

[10] C. Shi, M. H. Ammar, E. W. Zegura, and M. Naik,

“Computing in cirrus clouds: the challenge of

intermittent connectivity,” in Proceedings of the first

edition of the MCC workshop on Mobile cloud

computing, ser. MCC ’12. New York, NY, USA:

ACM, 2012, pp. 23–28. [Online]. Available:

http://doi.acm.org/10.1145/2342509.2342515

[11] C. Shi, V. Lakafosis, M. H. Ammar, and E. W.

Zegura, “Serendipity: enabling remote computing

among intermittently connected mobile devices,” in

MobiHoc, 2012, pp. 145–154.

[12] L. A. Barroso and U. Holzle,¨ “The case for energy-

proportional com-puting,” IEEE computer, vol. 40,

no. 12, pp. 33–37, 2007.

[13] A. Mtibaa, A. Fahim, K. Harras, and M. Ammar,

“Towards resource sharing in mobile device clouds:

Power balancing across mobile de-vices,” in

Proceedings of the second edition of the MCC

workshop on Mobile cloud computing, ser. MCC

’13. New York, NY, USA: ACM, 2013.

