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ABSTRACT 

In this paper I tried to give some different strokes on theorem given by Cauchy’s on convergence and first limit 

theorem. We have some proofs on the same but I found some of mathematics learner found difficult to understand the 

theorem. Merely four months on working on it I came to this conclusion that we may use the proposed approach too. 

Therefore this proof will help such mathematics learner a lot. 
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In many centuries, study of sequence and 

series is major part in real analysis and specially in 

seventeenth century Euler’s, Cauchy’s are notable 

mathematician those who have given many theorems, 

proposition & criteria in the field of real analysis. 

Many researchers have been done their 

research work on these mathematicians’ works. Here I 

tried to give one more strokes in proving the two 

theorems. 

Cauchy has given first theorem on limit but 

the proof which I delivered to my students I found few 

are asking why to choose an = bn + l do we have any 

other method that’s why I removed this part and 

provide another way to proof. Similarly with different 

approach the theorem “every convergent sequence is 

Cauchy’s sequence” is also proved.      

Theorem 1 and theorem 2 are existing mode 

of proof whereas theorem 3 and theorem 4 are 

proposed method of proof which I used to call proof 

with different strokes.        

Definition 1 

The sequence 
{ }na converges (has limit l) to 

l when this holds: for any ɛ > 0 there exists K such that  

n
a l n Kε− < ∀ ≥

. 

 Informally, this says that as n gets larger and larger the 

numbers 
{ }na get closer and closer to l. 

Definition 2 

A sequence 
{ }na   is bounded above if there 

is a real number b such 

that 

{ }na b for all n≤
  

and bounded below if there is a real number c such that 

{ }na c for all n≥
 or bounded if there is a real 

number r such that 

n
a r for all n≤

 

Definition 3 

We say that a sequence of real numbers 

{ }na is a Cauchy sequence provided that for every   ɛ 

> 0, there is a natural number N so that when n;m ≥ N, 

we have that: 

n ma a ε− <
  

Cauchy Criterion (or Cauchy Theorem) 

Suppose a sequence 
{ }na converges. Then 

for any ɛ > 0, there is N, such that m; n > N =)  

n ma a ε− <
. 

 Proof: 

Suppose 
lim

n
n
a l

→∞
=

 For any ɛ > 0, there is N, such 

that n > N implies  

2
na l

ε
− ≤

. Then m; n > N implies  

2 2
n m n m n ma a a l l a a l a l

ε ε
ε− = − + − ≤ − + − < + =

Theorem 1: Every convergent sequence is Cauchy 

sequence 

Proof: 

Suppose { }na  is a convergent sequence, and  Let for 

all n≥m,  lim n
n
a l

→∞
=

 
. 
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We can find n of N such that for all n> N, 

2
na l

ε
− ≤

. Therefore, by the triangle inequality,  

for all m, n> N,    

      
2 2

| | | |m n m na l la a a
ε ε

ε− ≤ − + − < + =
 

So { }na is Cauchy. 

Theorem 2: Cauchy’s first theorem on limit 

If { }na is a sequence of real number and 

lim n
n
a l

→∞
=  then 

1 2 1......
lim n n

n

a a a a
l

n

−

→∞

+ + + +
=    

Proof:  

Let  n n
a b l n N= + ∀ ∈  

Since lim n
n
a l

→∞
=  

Therefore  

lim lim ( ) limn n n
n n n

l a b l b l
→∞ →∞ →∞

= = + = +  

So lim 0n
n
b

→∞
=  as well as  

1 2 1 2....... .......n na a a b b b
l

n n

+ + + +
= + …..(1) 

Since lim 0n
n
b

→∞
=  therefore for 0 m Nε > ∃ ∈  s.t. 

0
2

nn m b
ε

∀ ≥ ⇒ − < …..(2) 

Again since lim 0n
n
b

→∞
=  therefore <bn > is convergent 

sequence and hence it is bounded  

So 0 . . nK s t b K n N∃ > ≤ ∀ ∈ …..(3) 

Form equation (1) 

1 2 1 2

1 2

1 2 1 2

....... .......

.......

....... .......

.
2

2

n n

n

m m m n

a a a b b b
l

n n

b b b

n

b b b b b b

n n

m n m
K n m
n n

m
K
n

ε

ε

+ +

+ + + +
− =

+ +
≤

+ + + +
= +

−
< + ∀ ≥

< +

 If 
2

2

m m
K n K

n

ε

ε
< ⇒ > then the above 

inequality become  

1 2 .......

2 2

na a a
l

n

ε ε
ε

+ +
− < + =   

For all 

 

1 2

2
max( , )

.......
lim n

n

m
n m K

a a a
l

n

ε

→∞

>

+ +
∴ =

 

Theorem 3: Every convergent sequence is Cauchy 

sequence. 

Proof:  

Suppose we have a sequence { }na converging to l, 

that means lim n
n
a l

→∞
= or we may say 

2
na l n m

ε
− < ∀ ≥     …..(1) 

Therefore  

1

2

2

2

.

.

2

n

n

n p

a l

a l

a l

ε

ε

ε

+

+

+

− <

− <

− <

 

0n m and p∀ ≥ ≥  

Now for Cauchy sequence  
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2 2

n p n n p n

n p n

a a a l l a

a l l a

ε ε
ε

+ +

+

− = − + −

≤ − + −

< + =

 

Therefore  

0
n p n
a a n m and pε+ − < ∀ ≥ ≥  

Hence { }na in Cauchy’s sequence.  

Theorem 4: Cauchy’s first theorem on limit 

If { }na is a sequence of real number and 

lim n
n
a l

→∞
=  then 

1 2 1......
lim n n

n

a a a a
l

n

−

→∞

+ + + +
=    

Proof: 

Suppose we have a sequence { }na having limit l , that 

means  lim
n

n
a l

→∞
= or we may say 

n
a l n mε− < ∀ ≥     …..(1) 

Equation (1) can be interpreted as    

nl a lε ε− < < +  

In particular ε =1  

1
n
a l n m− < ∀ ≥  

So  

1
n n n
a a l l a l l l= − + ≤ − + < +  

Let 
1 2 3 1

max{ , , ........ ,1 }
m

M a a a a l
−

= +  

n
a M n N≤ ∀ ∈  

 Therefore na is bounded  

Since  

nl a lε ε− < < +   

For  n= 1,2,3,4………m,m+1, m+2, m+3,………..n 

the above inequality is as follows   

1

2

3

1

2

.

.

.

.

.

.

m

m

m

n

M a M

M a M

M a M

M a M

l a l

l a l

l a l

ε ε

ε ε

ε ε

+

+

− < <

− < <

− < <

− < <

− < < +

− < < +

− < < +

    

Adding all the above term we have  

1 2( )( ) ... ( )( )nmM n m l a a a mM n m lε ε− + − − < + + + < + − +

Dividing above inequality by n  

1 2 ...( )( ) ( )( )na a amM n m l mM n m l

n n n

ε ε+ + +− + − − + − +
< <

  

1 2 ...( )( ) ( )( )
( ) na a am n m l m n m l
M M

n n n n n

ε ε+ + +− − − +
− + < < +

 

Now taking n→∞  the above inequality become  

1 2 1...... n na a a a
l l

n
ε ε−+ + + +

− < < +

 

Or we can say  

1 2 1...... n na a a a
l n m

n
ε−+ + + +

− < ∀ ≥  

i.e. 1 2 1......
lim n n

n

a a a a
l

n

−

→∞

+ + + +
=      

CONCLUSION 

On the basis of proof of above four theorems 

we may come to this conclusion that the proof of 

theorem 1 & 2 also may have different solution or proof 

in theorem 1 existing proof on the basis of concept of 

convergence whereas in theorem 3 taking the concept 

of limit. In continuation theorem 2 sequence is 

represented by other sequence and the proof done but 

in theorem 4 limit & bounded concept was taken. The 



KHAN: SOME DIFFERENT STROKES IN CAUCHY’S THEOREM 

Indian J.Sci.Res. 14 (2): 546-549, 2017 

proposed methods are also one of the easy & different 

way to conclude theorems.    
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